该预印本版的版权持有人于2024年10月6日发布。 https://doi.org/10.1101/2024.10.03.24312030 doi:medrxiv preprint
人口过渡的力量在1980年代开始占据西非和中非,并继续塑造该地区。撒哈拉以南非洲,有超过10亿人,其中一半到2050年(世界银行,2020年)将不到25岁,是一个多元化的大陆,提供了人类和自然资源,有可能产生包容性增长并消灭该地区的贫困。非洲,尤其是西非和中非,刚刚开始以大量的年轻人(2015年为41.1%低于15),高生育率(2010- 2015年期间为4.73)和高死亡率(2010年期间预期寿命为40.73),开始了其人口过渡(41.1%)。到2050年,非洲的人口将超过25亿,占世界的26%
Morelle Raïsa Djiaala Tagne、Mireille Ebiane Nougang、Edith Brunelle Mouafo Tamnou、Awawou Manouore Njoya、Pierrette Ngo Bahebeck、Samuel Davy Baleng、Paul Aain Nana、Yves Yogne Poutoum、Genevieve Bricheux、Claire Stéphane Metsopkeng、Télesphore Sime-Ngando 和 Moïse Nola DOI: https://doi.org/10.22271/micro.2023.v4.i1b.72 摘要 这项研究评估了在雅温得(喀麦隆)的井和雨水样本中分离的蜡状芽孢杆菌、苏云金芽孢杆菌和枯草芽孢杆菌菌株的抗生素敏感性。在长旱季 (LDS)、短旱季 (SDS)、长雨季 (LRS) 和短雨季 (SRS) 期间每月收集水井水样,对于雨水则在 LRS 和 SRS 期间收集。考虑的抗生素包括亚胺培南、阿米卡星、庆大霉素、环丙沙星、氧氟沙星、磺胺甲唑和四环素。对于来自地下水的菌株,对于苏云金芽孢杆菌,抗生素抑制直径从 9.13 毫米(SDS 期间的磺胺甲唑)到 32.78 毫米(LDS 期间的亚胺培南),对于蜡状芽孢杆菌,抗生素抑制直径从 8.2 毫米(SDS 期间的磺胺甲唑)到 35.25 毫米(LDS 期间的亚胺培南)不等,对于枯草芽孢杆菌,抗生素抑制直径从 5.05 毫米(LRS 期间的氧氟沙星)到 29.25 毫米(LDS 期间的亚胺培南)。雨水中的芽孢杆菌直径从 4.55 mm(LRS 期间使用磺胺甲唑)到 25.65mm(LRS 期间使用亚胺培南),蜡状芽孢杆菌从 2.13 mm(LRS 期间使用亚胺培南)到 20.05mm(SRS 期间使用亚胺培南),枯草芽孢杆菌从 5.03 mm(SRS 期间使用庆大霉素)到 25.15mm(SRS 期间使用四环素)。LRS 期间分离出的芽孢杆菌菌株对大多数抗生素具有多重耐药性。大多数抗生素的抑菌直径在不同季节之间存在显著差异(p<0.05)。关键词:抗生素敏感性,芽孢杆菌菌株,地下水和雨水,抑菌直径变化 1. 引言 不同国家的水消耗量差异很大。这取决于其发展、人口和资源本身。当水被污染时,水会成为许多疾病的主要传播媒介之一,而这些疾病是导致人类或动物大规模流行病的原因。污染源包括河流、水体、咸水以及雨水、露水、雪和极地冰。每种环境中的水都可能被化学物质和微生物污染,包括原生动物、病毒和细菌 [1] 。水环境中有各种细菌科。这些微生物具有各种特性。通常用于识别细菌微生物的一些特性是革兰氏染色细胞壁和产孢特性。芽孢杆菌属细菌被称为革兰氏阳性菌和产孢菌。它们存在于空气、水中或土壤中 [2] 。对于人类来说,一些芽孢杆菌种是病原体或机会性病原体,而另一些只是共生菌。然而,细菌的共生特性取决于其环境中的几个因素 [3] 。除了食物中毒外,这些细菌会引起局部和全身感染,有时会导致患者死亡 [4, 5] 。多年来,人们也认识到生物颗粒对大气过程的潜在相关性 [6, 7] 。空气中的生物颗粒作为一个整体也被称为生物气溶胶。它们可以包括细菌细胞和细胞碎片、真菌孢子和真菌
chiba千叶大学医学院分子肿瘤学系,260-8670,日本b,b耳鼻喉科和颈部外科,卡纳泽大学医学科学研究生院,卡纳泽大学,卡纳泽瓦,伊希卡瓦,伊希卡瓦,伊西卡瓦,日本920-8640,日本c奇巴,chiba c chibib and chiba,chiba chiba,chiba chiba,260-2600000000于期。 Nanyang Technological University生物科学,新加坡Nanyang Drive 60号,637551,新加坡E E. Otorhinolaryngology/Head and Neck手术,Hamamatsu大学医学研究生院,Shizuoka Hamamatsu大学医学院研究生院 Chiba, 260-8670, Japan g Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore h Department of Haematology-Oncology, National University Cancer Institute, Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore i Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, Singapore, 117600, Singapore j Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore k Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore, 117599, Singapore l Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos,新加坡,138673,新加坡
美国国际开发署 (USAID) 的“电力非洲”项目资助了东非和中非的活动,即“赋能东非和中非 (EECA)”计划,其目的是增加东非和中非地区可负担、可靠、可持续和清洁能源的供应和使用,以实现可衡量的发展成果。这些可衡量的发展成果包括经济增长、增强复原力、改善生计以及增加农业、供水、教育、交通和电信等领域电力服务的包容性使用。EECA 已在 14 个国家实施:布隆迪、中非共和国、刚果民主共和国 (DRC)、吉布提、埃塞俄比亚、加蓬、肯尼亚、刚果共和国、卢旺达、索马里、南苏丹、苏丹、坦桑尼亚和乌干达。RTI International 是“电力非洲”EECA 活动的主要实施合作伙伴。
镰状疾病术语包括由血红蛋白S单独或与不同的β-珠蛋白突变结合的所有血红蛋白病。HBS构成了红色血液的主要部分,超出了新生儿时代的至少50%(大多数)。频繁的表型是同型HBSS-Sichelzell疾病,复合杂合子HBSβ-β-β-thalassymia(HBSβ+或HBSβ°-Thalassassä-mie)和HBSC疾病。是HBSD,HBS OARAB,HBS Lepore和HBSE等其他形式的组合。大约 30%的来自撒哈拉以南非洲以下的患者也有杂合(仅在一个Allel上缺失)或纯合子(两个等位基因上的一个)α+thalassyalassya,这会导致微细胞增多症。 大约 中非男性中有17%的男性缺乏G6PD。 中东和东地中海地区是α°和α+ thalassyalassia 2-3%的赞助的频率。大约30%的来自撒哈拉以南非洲以下的患者也有杂合(仅在一个Allel上缺失)或纯合子(两个等位基因上的一个)α+thalassyalassya,这会导致微细胞增多症。大约 中非男性中有17%的男性缺乏G6PD。 中东和东地中海地区是α°和α+ thalassyalassia 2-3%的赞助的频率。大约中非男性中有17%的男性缺乏G6PD。中东和东地中海地区是α°和α+ thalassyalassia 2-3%的赞助的频率。
颞叶癫痫中非典型皮质不对称和萎缩模式的拓扑发散Park, B.-y.;拉里维尔,S.;罗德里格斯-克鲁塞斯,R.;罗耶,J.;塔瓦科尔,S.;王,Y.; Caciagli,L.; Caligiuri,M.E.;甘巴德拉(Gambardella),A.; Concha,L.;凯勒,SS; Cendes,F.;阿尔维姆(MKM);安田,C.; Bonilha,L.; Gleichgerrcht,E.;福克,NK;克雷尔坎普(BAK);洛德,M.; Podewils,F.冯;朗纳,S.;鲁默尔,C.; Rebsamen,M.;威斯特,R.;马丁,P.; Kotikalapudi,R.;本德,B.;奥布莱恩,T.J.;法律,M.;辛克莱,B.; Vivash,L.;关,P.;德斯蒙德,PM;马尔帕斯,CB;他,E.;阿尔胡塞尼,S.;多尔蒂,C.P.卡瓦莱里,GL;德兰蒂,N.;卡尔维宁,R.;杰克逊,G.D.; Kowalczyk,M.;马斯卡尔奇,M.; Semmelroch,M.;托马斯,R.H.; Soltanian-Zadeh,H.; Davoodi-Bojd,E.;张,J.; Lenge,M.;格里尼(Guerrini),R.;巴托利尼,E.;哈曼迪,K.;福利,S.;韦伯,B.; Depondt,C.;阿布西尔,J.;卡尔,SJA;阿贝拉,E.;理查森,国会议员;德文斯基,O.;塞韦里诺,M.;斯特拉诺,P.;帕罗迪,C.; Turtledove,D.;哈顿,S.N.你,SB;邓肯,J.S.; Galovic,M.;惠兰,CD; Bargalló,N.; Parente,J.; Conde-Blanco,E.;沃达诺,AE; Tondelli,M.;梅莱蒂,S.;孔祥哲;弗兰克斯,C.;费舍尔,SE;卡尔达鲁,B.;赖顿,M.;拉巴特,A.;西索迪亚,SM;汤普森,PM;麦当劳,C.R.;贝尔纳斯科尼,A.;贝尔纳斯科尼,N.; Bernhardt,BC 2022,文章/致编辑的信(Brain,145,4,(2022),第 1285-1298 页)
我们提出了一种减少电路中非 Clifford 量子门(特别是 T 门)数量的方法,这是有效实现容错量子计算的重要任务。此方法与大多数基准电路中无辅助 T 计数减少的先前方法相当或优于后者,在某些情况下可带来高达 50% 的改进。我们的方法首先将量子电路表示为 ZX 图,这是一种张量网络结构,可以根据 ZX 演算规则进行变换和简化。然后,我们扩展了最近的简化策略,添加了一个不同的成分,即相位小工具化,我们使用它通过 ZX 图传播非 Clifford 相位以找到非局部抵消。我们的程序可不加修改地扩展到任意相位角和变分电路的参数消除。最后,我们的优化是自检的,也就是说,我们提出的简化策略足够强大,可以独立验证输入电路和优化输出电路的相等性。我们已经在开源库 P y ZX 中实现了本文的例程。