临床前扰动筛选,其中在疾病模型上系统地测试了遗传,化学或环境扰动的影响,由于其规模和因果性质,对机器学习增强的药物发现具有巨大的希望。预测模型可以根据分子特征来推断以前未经测试的疾病模型的扰动反应。这些在计算机标签中可以扩展数据库并指导实验优先级。但是,对扰动特异性效应进行建模并在各种生物环境中产生健壮的预测性能仍然难以捉摸。我们介绍了LEAP(自动编码器和预测变量的分层集合),这是一个新颖的集合框架,可改善稳健性和概括。LEAP利用多个Damae(数据增强蒙版的自动编码器)表示和套索回归器。通过结合从不同随机初始化中学到的多种基因表达表示模型,在预测未见细胞系,组织和疾病模型中基因本质或药物反应方面始终胜过最先进的方法。值得注意的是,我们的结果表明,结合表示模型而不是仅预测模型会产生出色的预测性能。超出其性能增长,LEAP在计算上是有效的,需要最小的高参数调整,因此很容易将其纳入药物发现管道中,以优先考虑有希望的目标并支持生物标志物驱动的分层。这项工作中使用的代码和数据集可公开使用。
阿纳塔普尔联合大学附属拉吉夫·甘地纪念工程技术学院(自治)。获得 NBA (TIER-I) 和 NAAC of UGC 认证。新德里,获得 A+ 级认可 UGC-DDU KAUSHAL KENDRA NANDYAL-51850 1,(Estd-1995)
卫生专业人员基于广泛的诊断和治疗疾病和其他健康问题的理论和事实知识,研究,建议或提供预防,治愈,康复和促销卫生服务。他们可以对人类疾病和疾病的研究以及治疗方法进行研究,并监督其他工人。通常,在与健康相关的领域的高等教育机构进行研究的结果3 - 6年的时间里,通常会获得所需的知识和技能,从而获得一级或更高的资格。卫生专业人员包括医生,护士,助产士,物理治疗师,牙医,辅助医师等。
权利版权所有©作者2020。开放访问:本文是根据创意共享归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,并提供了与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
本文的目的是研究代理人行为规则中复杂程度的不同程度如何影响个人和宏观经济的表现。,我们分析了引入基于代理的宏观模型企业的效果,该公司能够通过使用简单的机器学习算法来制定有效的销售预测。这些技术能够提供公正的预测并具有一定程度的准确性,尤其是在遗传算法的情况下。我们观察到机器学习允许企业可以增加利润,尽管这会导致工资份额下降和长期长期增长率较小。预测方法能够提出期望,这些期望在冲击不大时保持公正,因此提供了预测能力,在一定程度上可能与卢卡斯的批评一致。关键字:基于代理的模型,机器学习,遗传算法,预测,政策冲击。JEL分类:C63,D84,E32,E37。
摘要:及时发现并采取积极措施避免中风至关重要,因为这种疾病很可能导致严重残疾或致命后果。对于缺血性和出血性中风,必须及时使用适当的溶栓或抗凝药物。关键的初始阶段围绕及时识别中风的初始指标(个体之间可能有所不同)并在规定的治疗窗口内及时寻求医疗干预。本研究介绍了一种基于机器学习的系统,该系统采用实时测量心电图 (ECG) 和光电容积描记法 (PPG) 数据来以有意义的方式预测和解释中风预后症状。为了实现实时中风预测,我们开发并实施了一种集成结构投票分类器,该分类器结合了 SVM、随机森林和决策树分类器。这种方法可以准确预测患者的中风诊断,并且可以通过利用患者的 ECG 和 PPG 属性数据轻松实施。关键词:深度学习、机器学习、心电图(ECG)、光电容积描记法(PPG)、实时脑卒中预测
抽象动机:由于DNA测序的进步,现在常规地进行了环境微生物群落的分类学分析。确定这些群落在全球生物地球化学周期中的作用需要鉴定其代谢功能,例如氢氧化,还原和碳固定。这些功能可以直接从宏基因组学数据中推断出来,但是在许多环境应用中,MetabarCoding仍然是选择的方法。从元法编码数据及其整合到地球化学循环的粗粒表示中,代谢功能的重建仍然是当今有效的生物信息学问题。结果:我们开发了一条称为Tabigecy的管道,该管道利用分类学官员来预测构成生物地球化学周期的代谢功能。在第一个步骤中,Tabigecy使用该工具Esmecata从输入液位中预测共识蛋白质组。为了优化此过程,我们生成了一个预先计算的数据库,其中包含来自Uniprot的2,404个分类单元的信息。使用BigeCyhmm搜索了共有的蛋白质组织,BigeCyhmm是一个新开发的Python软件包,依靠隐藏的Markov模型来识别参与生物地球化学周期代谢功能的关键酶。然后将代谢功能投射到周期的粗粒表示上。我们将塔博基(Tabigecy)应用于两个盐洞数据集,并通过对样品进行的微生物活性和水力化学测量结果验证了其预测。结果突出了研究微生物群落对地理化学过程的影响的方法。关键字:微生物群落,生物地球化学周期,代谢功能,分类学官员
背景:HIV测试是艾滋病毒预防的基石,也是实现联合国联合国艾滋病毒/艾滋病联合计划(UNAIDS)到2030年终止艾滋病的目标的关键步骤。尽管有相关的调查数据,但使用机器学习(ML)来分析和预测南非成年人的HIV测试方面仍然存在研究差距。需要进一步的研究来弥合这一知识差距并为改善HIV测试的基于证据的干预措施提供信息。目的:本研究旨在通过在南非反复基于成人人群的调查中应用监督的ML算法来确定HIV检测的一致预测指标。方法:将对多波横断面调查数据进行回顾性分析,以确定18岁及以上的南非成年人对HIV测试的预测因子。将在南非国家艾滋病毒患病率,发病率,行为和传播调查(SABSSM)调查的五个周期中应用一种监督的ML技术。人类科学研究委员会(HSRC)于2002,2005,2008,2012和2017进行了SABSSM调查。可用的SABSSM数据集将导入Rstudio(版本4.3.2; Potit Software,PBC),以清洁和删除异常值。将进行卡方检验,以选择HIV测试的重要预测指标。每个数据集将分为80%的培训和20%的测试样本。逻辑回归,支持向量机,随机森林和决策树。将使用一种交叉验证技术将训练样本划分为K折,包括验证集,并且将对每个折叠进行训练。模型的表现将在验证集上使用评估指标进行评估,例如精度,精度,回忆,F 1 -SCOOR,曲线接收器操作特性下的面积和混淆矩阵。结果:SABSSM数据集是HSRC数据库上可用的打开访问数据集。伦理学的批准是从约翰内斯堡大学研究与伦理委员会于2024年4月23日获得的(REC-2725-2024)。HSRC于2024年8月20日授予作者访问所有五个SABSSM数据集。探索数据集以识别可能影响HIV测试吸收的自变量。这项研究的结果将确定一致的变量,预测20年中南非成年人口的艾滋病毒测试吸收。此外,本研究将评估和比较4种不同ML算法的性能指标,最佳模型将用于开发HIV测试预测模型。
安全、安全行为和安全文化是每个工作场所工作环境的重要方面。然而,在军事行动中,安全文化和安全工作对于维持人员良好的工作环境尤为必要,同时必须不断适应以应对危急情况下经常出现的新挑战,同时也要跟上这些行动中快速的技术发展。为了继续保持高水平的安全以保护人员和设备,同时也保持信任和完成任务的能力,军事行动中的安全工作需要持续、动态地进行。
背景:流感(流感)可以严重影响长期护理设施。居住在长期护理设施中的人被认为是由于流感感染而引起的并发症的高风险。在爆发期间的卫生保健工作者之间的感染也很常见。年度流感疫苗接种是预防流感病毒感染及其并发症的最有效方法。建议所有没有禁忌疫苗接种的6个月大的6个月大的人进行疫苗接种。抗病毒药物是疫苗接种的辅助药物,在接触流感病毒后用作治疗和用于化学预防时的剂量有效。65岁及以上的人有流感严重并发症的高风险,部分原因是随着年龄的增长,免疫防御能力的变化。近年来,美国CDC估计,在65岁及以上的人群中,与季节性流感相关的死亡中有70%至85%,在这个年龄段的人群中发生在季节性流感相关的住院中的50%至70%。(https://www.cdc.gov/flu/about/burden/burden/past-seasons.html)本报告总结了长期护理设施中的流感疫情管理的多方面方法,以实现及时且有效的反应。本指南适用于2024-2025流感季节。