保持足够长时间的相干性以执行有意义的计算是实现大规模量子计算机的主要挑战之一。从环境中耦合的噪声是导致退相干的主要因素,但可以通过工程设计和控制解决方案来缓解。然而,这只有在彻底了解主要噪声源及其频谱后才有可能。在本文报告的工作中,我们使用硅量子点自旋量子位作为计量设备来研究量子位所经历的噪声环境。我们将此量子位对电噪声的敏感度与相同环境和测量设置中植入的硅供体量子位的敏感度进行比较。我们的结果表明,正如预期的那样,由于斯塔克位移较大,量子点自旋量子位对电噪声的敏感度高于供体自旋量子位,噪声光谱数据显示中频(2-20 kHz)的电荷噪声贡献明显。
摘要 为了提高自主微电网的功率水平,需要更高的电压。本文对一个运行在中压水平和恒定频率下的微电网进行了详细的 Matlab/Simulink 建模。太阳能和风能利用均采用改进的升压变换器和中频变压器隔离的 DC/DC 变换器,以便将其连接到微电网。本文进一步采用基于差分进化 (DE) 的方法进行负载流分析,以计算出各母线的电压。DE 方法得到的结果在某些节点或母线与基于 Matlab/Simulink 平台的时域固定步长建模的结果几乎相同,而在其他节点,它们非常接近。因此,DE 方法可用于在具有更多节点的更复杂微电网中进行负载流分析,以克服 Matlab/Simulink 和其他工具有限的建模能力。此外,这项新的研究成果也为大规模微电网的稳定性分析奠定了基础。
为了减少交流微电网对大电网稳定性的影响,计划电力传输优于动态电力交换。为了最大限度地减少太阳能发电间歇性对大电网的影响并减少电池储能的使用,需要开发合适的运行方法。一种潜在的解决方案是交流微电网,其中光伏板通过削减输出功率来控制 [6]。在阳光明媚的日子里,交流微电网可以在自主模式下运行,而无需使用储能。在阳光较少的日子里,需要从主电网输入一些电力来弥补短缺。在阴天,所有电力都必须从主电网输入。可以建造一个具有太阳能和/或风能发电能力的大型储能场,并通过输电线和升降压变压器与交流微电网相连;所需的电力可以从这样的储能场传输。此外,可以采用多个并联中频变压器的固态变压器(SST),通过 50 Hz 升压变压器将储能场与输电线路连接起来。
简介 俄亥俄州卫生部 (ODH) 在俄亥俄州电力选址委员会中的作用一直是评估案例,以确定任何发电结构或设施的建造、改造、运营或退役是否会对公众的健康和福祉产生影响。ODH 与其他州机构合作,包括评估生态影响的俄亥俄州自然资源部 (ODNR) 和负责环境许可和监管的俄亥俄州环境保护局 (OEPA),以提供全面、可靠的评估。 本文件的目的是根据现有研究评估常见技术发出的低频至中频电磁场 (EMF) 是否有可能对人类健康造成危害。ODH 应俄亥俄州电力选址委员会的要求制定了这份文件。本文件中的决定是基于对最初出版时可用的文献的审查而做出的。随着科学信息随时间变化,以及随着更多研究的出现,ODH 将根据需要重新评估这些结论。 ODH 并未开展独立的、同行评审的研究来编写该文件。
摘要。本文提出了一种基于动态阈值 MOSFET (DTMOS) 的下变频吉尔伯特混频器,用于采用 UMC 180 nm CMOS 工艺的医疗植入通信服务 (MICS) 接收器设计。电流源辅助器和开关偏置技术用于提高基于 DTMOS 的吉尔伯特混频器的性能。所提出的设计在 403 MHz 的射频 (RF) 下工作,在 5 dBm 的 LO 功率下最大变频增益为 12.5 dB。所提出的设计的 1 dB 压缩点和三阶输入截点 (IIP3) 分别为 - 8.79 dBm 和 3.92 dBm,噪声系数 (NF) 在 10 MHz 中频 (IF) 下为 6.6 dB。该设计电路在 0.9 V 电源电压下工作,直流功耗为 0.55 mW,芯片面积为 0.035 9 0.037 mm 2。因此,这种具有高转换增益和更好噪声性能的设计是适合 MICS 应用的模块。
由于固有的波动,风能整合到大规模的网格中会带来不稳定和其他安全风险。在本研究中,提出了使用多代理深钢筋学习,风力涡轮机(WT)的新协调控制策略和混合动力储能系统(HESS)是为了进行风能平滑的目的,其中HESS与转子动能和风力涡轮机的旋翼动能结合在一起。首先,通过自适应变化模式分解(VMD)预测风力发电量并分解为高,中和低频组件。然后,通过多代理双层列表深层确定性策略梯度算法(MATD3)进行高频和中频的参考功率的最佳二级分配,以平滑功率输出。为了提高学习的勘探能力,将一种新型的α-状态lévy噪声注入了MATD3的动作空间,并动态调节了噪声。模拟和RT-LAB半物理实时实验结果表明,提出的控制策略可以合理地充分利用WT和HESS组合生成系统的平滑输出功率,延长储能元件的寿命并降低WT的磨损。
江苏科技大学自动化系,镇江 212000 * E-mail: zhipengfei@just.edu.cn 收稿日期: 2022年8月23日 / 接受日期: 2022年9月22日 / 发表日期: 2022年10月10日 本文基于频域分析了光电场输出功率波动特性,并提出了一种基于自适应小波包分频的光电功率分配方法,该方法合理分配了低频、中频和高频能量在不同储能元件之间的分布。结合超级电容器和锂电池的储能特性,设计了一种超级电容器和锂电池的协调控制策略,有效抑制了光伏功率波动对电网的影响。与光伏原有功率相比,本文提出的方法大大降低了光伏功率的波动,从而使最终并网功率区域平滑,从而使电网和储能组件稳定安全发展。最后通过某光电场实测数据的半实物仿真验证了该方法的有效性。关键词:混合储能;协调控制策略;自适应小波包分解1.引言
摘要:我们考虑了相对论潮汐对时钟比较实验频率偏移的影响。在潮汐、轴对称和旋转的地球引力场中,推导出频率偏移和时间传递的相对论公式。借助描述固体地球潮汐响应的洛夫数,我们建立了地面时钟比较实验的潮汐效应与重力仪的局部重力潮汐之间的数学联系,这反过来又为我们提供了一种利用局部重力潮汐数据消除潮汐对时钟比较影响的方法。此外,我们开发了一种受扰开普勒轨道的方法来确定太空任务时钟比较的相对论效应,与传统的未受扰开普勒轨道方法相比,该方法可以进行更精确的计算。利用这种摄动方法,可以给出由于潮汐力、地球扁率等影响而引起的轨道变化对相对论效应的摄动。另外,作为结果的应用,我们模拟了地面时钟比较中频移的潮汐效应,并对天琴任务和 GPS 给出了一些估计。
声音对海洋哺乳动物的影响传统上被定义为伤害或行为紊乱。最早对行为紊乱的担忧是,高噪音会通过掩盖微弱信号来减少通信范围。很少有研究记录这种影响,但最近的研究强调了动物用来补偿高噪音的机制。许多研究已经记录了行为变化与暴露的关系,但事实证明很难将这些变化与对个体动物福利或种群状况的影响联系起来。解释影响的有希望的方法包括避开栖息地、觅食的能量学以及将反捕食者行为模型应用于人类干扰。在 20 世纪 90 年代,伤害的声学标准是基于暂时性听力损失而指定的。海军声纳演习期间,喙鲸非典型性大规模搁浅的证据表明,某些物种在某些环境下,在较低暴露水平下的行为反应可能会导致受伤或死亡。一头带标签的喙鲸对实验性播放的中频声纳声音表现出与虎鲸叫声相似但较弱的反应,这表明在暴露于不太可能直接造成伤害的声音水平后,反捕食者反应可能会伤害动物。
声音对海洋哺乳动物的影响传统上被定义为伤害或行为紊乱。最早对行为紊乱的担忧是,高噪音会通过掩盖微弱信号来减少通信范围。很少有研究记录这种影响,但最近的研究强调了动物用来补偿高噪音的机制。许多研究已经记录了行为变化与暴露的关系,但事实证明很难将这些变化与对个体动物福利或种群状况的影响联系起来。解释影响的有希望的方法包括避开栖息地、觅食的能量学以及将反捕食者行为模型应用于人类干扰。在 20 世纪 90 年代,伤害的声学标准是基于暂时性听力损失而指定的。海军声纳演习期间,喙鲸大量搁浅的异常现象不断出现,这表明,某些物种在某些环境下,在较低暴露水平下的行为反应可能会导致受伤或死亡。一头带标签的喙鲸对实验性播放的中频声纳声音表现出与虎鲸叫声相似但较弱的反应,这表明,在暴露于不太可能直接造成伤害的声音水平后,反捕食者反应可能会对动物造成伤害。