注释:1.电流传输比(百分比)定义为输出集电极电流 I O 与正向 LED 输入电流 I F 之比乘以 100。2.设备被视为双端设备:引脚 1 和 3 短接在一起,引脚 4、5 和 6 短接在一起。3.根据 UL 1577,每个光耦合器都通过施加绝缘测试电压 4800 V RMS 持续 1 秒进行验证测试。4.逻辑高电平下的共模瞬态抗扰度是共模脉冲 V CM 上升沿上的最大可容忍(正)dV CM /dt,以确保输出将保持在逻辑高状态(即,V O > 2.0 V)。逻辑低电平下的共模瞬态抗扰度是共模脉冲信号 V CM 下降沿上的最大可容忍(负)dV CM /dt,以确保输出将保持在逻辑低状态(即,V O < 0.8 V)。5.1.9 k 负载代表 1.6 mA 的 1 TTL 单位负载和 5.6 k 上拉电阻。6.交流输出电压比其中频值低 3 dB 的频率。7.建议使用连接在引脚 4 和 6 之间的 0.1 μF 旁路电容。8.对于任何给定设备,脉冲宽度失真 (PWD) 定义为 |t PHL - t PLH |。9.相同测试条件下任意两个部件之间的 t PLH 和 t PHL 之间的差异。
A2AD 反介入区域拒止 AAM 先进空中机动 ADAS 自动驾驶辅助系统 ADC 模数转换器 A-GNSS 辅助 GNSS AoA 到达角 AI 人工智能 AR 增强现实 CAS 商业认证服务 COTS 商用现货 CSAC 芯片级原子钟 D2D 设备到设备 DL-AoD 下行链路出发角 DL-TDOA 下行链路到达时间差 DME 测距设备 EASA 欧盟航空安全局 EDA 欧洲防务局 EKF 扩展卡尔曼滤波器 E-LORAN 增强型远程导航 EU 欧洲联盟 EUSPA 欧盟太空计划署 GEO 地球静止轨道 GDP 国内生产总值 GNSS 全球导航卫星系统 HAS 高精度服务 ICD 接口控制文件 IoT 物联网 IF 中频 INS 惯性导航系统 KF 卡尔曼滤波器 LANS 月球增强导航服务 LEO 低地球轨道 LCRNS 月球通信中继和导航系统 LITS 线性离子阱 LNA 低噪声放大器 LNSS 月球导航卫星系统 LORAN 远程导航 MAAS 海上自主表面 MCS 主控站 MEMS 微机电系统 MEO 中地球轨道多 RTT 多往返时间行程 NAVAC 导航创新支持计划咨询委员会 NLoS 非视距 OSNMA 开放服务 - 导航消息认证 PKF 粒子滤波器 PNT 定位导航和授时 PPP 精密单点定位 PRS 公共监管服务 PTF 精密授时设施 QKD 量子密钥分发 QoS 服务质量 QZSS 准天顶卫星系统 RAIM 接收器自主完整性监测 RF 射频
数字化赋能,担当担当。公司持续夯实数字化基础,建成全球最大规模4G/5G共建共享网络,在用5G共享基站超121万个,4G中频共享基站超200万个。落实国家“东西算力转移”项目,持续优化算力布局,加快新型算力基础设施建设,智能算力规模达11EFLOPS,推动云网融合数字化信息基础设施智能化演进升级。打造优质数字化产品和服务,发布“灵泽数据元素2.0平台”,打造集云、智能计算、超算于一体的智能计算加速平台“云效”,推出一站式智能计算服务平台“慧聚”。打造“1+N+M”星辰大机型系列产品体系,在政务、教育、交通等垂直领域推出12大垂直机型,加速人工智能赋能新型工业化。推动5G产品服务全新升级,数字家庭、智慧社区等场景应用融合推广。积极构建数字政府全栈能力体系,打造社会治理平台,助力提升政务服务水平和智慧治理水平。强化“客户说了算”机制和流程,强化智慧服务能力,客户感知和服务美誉度持续提升。打造卓越品牌,坚持品牌引领作用,提升服务能力。
摘要:重力波(GWS)是子午线和上层平流层中子午倾覆循环的关键驱动因素之一。他们在气候模型中的表示遭受了不足的分辨率和对其参数化的有限约束。这种掩盖了对气候变化中中大气环流变化的评估。This study presents a comprehensive analysis of stratospheric GW activity above and downstream of the Andes from 1 to 15 August 2019, with special focus on GW representation ranging from an unprecedented kilometer- scale global forecast model (1.4 km ECMWF IFS), ground-based Rayleigh lidar (CORAL) observations, modern reanaly- sis (ERA5), to a coarse-resolution climate model (EMAC).与ERE5相比,发现Zonal GW动量(GWMF)的分辨垂直浮标(GWMF)的强度至少为2-2.5。与IFS中解决的GWMF相比,ERA5和EMAC的选址继续产生60 8 s的过度GWMF极点,从而在已解决的GWMF和参数化的GWMF之间产生明显的差异。在IFS和ERA5中对GW Pro Files的类似验证验证了相似的波结构。,即使在; 1公里的分辨率,IFS中的解析波弱于LIDAR观察到的波。此外,跨数据集的GWMF估计值表明,基于温度的代理基于线性GWS的中频近似,由于简化的GWMF和GW波长估计的数据高估了GWMF。总体而言,该分析为参数化验证提供了GWMF基准,并要求三维GW参数化,更好的上限处理和垂直分辨率随着模型中水平分辨率的增加而增加,以进行更现实的GW分析。
摘要 通过中频全向多波束声纳获取的数据开发可用于开展渔业研究中的原始研究,但尽管大多数渔船和许多研究船上都配备了此类设备,但却很少使用。这是唯一用于实时监测船只或浮标周围水平全向平面内鱼群的系统。1996 年至 2001 年间,我们使用了两种标准全向声纳,并根据两种主要采样方案开发了利用其特定声学数据的新方法:“勘探”,包括捕鱼和搜索作业,以及“漂流”,如使用仪器浮标系统或在固定船只上。我们提出了一种从研究船或商船上连续采集数据的完整方法,并通过图片分析和数据处理方法自动提取数据。考虑了两种数据分析情况:第一种是基于逐个学校的“单校”模式;第二种模式考虑了在声纳采样范围内检测到的所有鱼群,即“集群”模式。基本声纳信息分为五类,包括 24 个调查和声纳参数以及 55 个鱼群、集群和渔民行为描述符。我们回顾了这些类别的应用,并讨论了它们在渔业科学中的应用前景。如果声纳系统能够评估船只避让对鱼群生物量评估的影响,那么简单的声纳回声积分过程就无法提供准确的丰度估计。全向声纳数据可用于集体分析鱼群的游泳速度、扩散和迁移方面的运动学、群体分裂和合并指数等聚集动力学、集群的空间特征(如鱼群密度)、二维结构和渔民行为。将这些数据整合到鱼群数据库中,包括多频回声测深仪和横向多波束(3D)声纳数据与物种识别方法相结合,将能够全面了解鱼群行为,从而采用准确的渔业管理方法。
摘要 通过中频全向多波束声纳获取的数据开发可用于渔业研究的原创性研究,但尽管大多数渔船和许多研究船上都配备了此类设备,但这种设备却很少使用。这是唯一一种用于实时监测船只或浮标周围水平全向平面内鱼群的系统。1996 年至 2001 年间,我们使用了两种标准全向声纳,并根据两种主要采样方案开发了利用其特定声学数据的新方法:“勘探”,包括捕鱼和搜索作业,以及“漂流”,如使用仪器浮标系统或固定船只。我们提出了一种从研究船或商业船上连续采集数据的完整方法,通过图片分析自动提取数据并采用数据处理方法。考虑两种数据分析情况:第一种是逐个鱼群进行分析,即“单群”模式;第二种是考虑声纳采样体积内检测到的所有鱼群,即“集群”模式。基本声纳信息分为五类,包括 24 个调查和声纳参数以及 55 个鱼群、集群和渔民行为描述符。我们回顾了这些类别的应用,并讨论了它们在渔业科学中的应用前景。如果声纳系统能够评估船只避让对鱼群生物量评估的影响,则简单的声纳回声积分过程无法提供准确的丰度估计。全向声纳数据可用于集体分析鱼群的游动速度、扩散和迁移方面的运动学、群体分裂和合并指标等聚集动力学、群体密度等集群的空间特征、二维结构和渔民行为。将这些数据整合到鱼群数据库中,包括多频回声测深仪和横向多波束 (3D) 声纳数据以及物种识别方法,将使我们能够全面了解鱼群行为,从而采用准确的渔业管理方法。
极光现象本质上是动态的:观测到的事件具有丰富的结构,在空间和时间上都很复杂,具有科学上有趣的特征。虽然使用 CCD 或全天相机进行光学极光观测很常见,但极光在无线电频率 (RF) 下也具有有趣的发射特性,特别是在低频和高频波段。极光发射无线电观测器 (AERO) 是一颗 6U 立方体卫星,配备了新型电磁矢量传感器 (VS) 天线。VS 将瞄准 100 kHz - 15 MHz 测量波段内的极光发射,这使得人们能够研究有趣的发射类型,例如极光千米辐射 (20 kHz -750 kHz)、中频爆发 (1.6 MHz - 4.4 MHz) 和回旋加速器发射 (2.8 MHz - 3.0 MHz)。 VS 天线从立方体卫星框架展开后,两端之间的距离为 4 米,并展开形成电偶极子和磁环天线,这些天线的灵敏度足以探测这组不同的科学目标。拥有太空平台(例如 AERO 的矢量传感器天线)可将探测器定位在电离层等离子体频率之上,否则会限制对无线电发射的观测。AERO VS 天线的新测量需要一组背景数据来验证所得数据产品的保真度。AERO 包括一个称为辅助传感器包 (ASP) 的辅助有效载荷,它将使用背景光学和磁数据增强 VS 测量。AERO 背景光学测量的目标是检测多个光谱带中极光发射的存在,即 557 nm 的绿线发射和 630 nm 的红线发射。选择 AMS AG AS7262 6 通道可见光波段光谱光度计作为光学传感器。我们提出了一个辐射测量模型,用于评估 AS7262 传感器测量目标极光事件的能力。我们考虑了许多不同的测试场景,包括不同的参数,例如以瑞利为单位的极光源辐射度、航天器
5. 简介 生物学和医学中最常见的细胞表征方法是使用荧光标记(标签)。然而,这是一个缓慢的过程,并且还会使细胞降解,使得它们在后续测试中的使用变得困难或不可能。任何类型的样品(细胞、液体、电子元件等)相对于频率的电行为称为阻抗谱。测量此特性的技术称为电阻抗谱 (EIS)。该技术在生物技术和医学领域有多种用途:毒理学测试[1]-[2]、医学诊断[3]-[6]、细胞特性、细胞活力和浓度的基础研究、组织表征[7]、生物技术过程中的生物质表征[8]-[9]、干细胞研究、药物测试[10]和个性化化学疗法[11]等。由于其应用,它还减少了使用动物进行药物测试的需要。作为荧光标记方法的替代,阻抗光谱是一种低成本、非侵入性的方法,可提供实时数据而不会损害细胞,是改善人类健康的一种有价值且多功能的工具。 [12]。为了充分发挥该技术的潜力,有必要对大量样本进行自动测量,并扩大测量的频率范围。为了满足这一需求,本文提出了一种用于在较宽测量频率范围(1 kHz - 10 GHz)内进行阻抗测量的集成电路设计,其基于以下假设:减小测量电路的尺寸及其与样品的连接长度可以显著减少影响高频测量的不良影响。这种集成电路在后期将能为生物学家和医生带来很大的便利,原因如下:1.它使研究人员能够根据实验的需要选择更多的频率值。这样,他们就可以在特定的低频、中频或高频值以及频率扫描之间进行选择。 2. 高频可以研究在低频下无法观察到的细胞特性,因为细胞膜对测量的影响减少了,因此可以研究细胞内物质和细胞器的特性。 3. 由于电路尺寸允许测量系统位于样品附近,因此可以创建高频、多样品测量系统,这大大降低了影响测量的寄生电效应。商业电池阻抗测量系统对多个样本进行测量,但无论是单个还是多个样本,最高频率通常在100 kHz以下。
背景:考虑到对基于频谱的服务的需求不断增长,并为了促进包括 5G 在内的先进无线服务的发展,本拟议报告和命令以及拟议修改命令将使 3.7-4.2 GHz 频段中的大部分中频频谱可供灵活使用,以确保持续、不间断地提供目前在该频段提供的服务。通过委员会主导的拍卖,该项目将确保 280 兆赫的频谱从固定卫星服务 (FSS) 和固定服务 (FS) 重新用于灵活使用,确保公众收回该资源的很大一部分价值,并确保该频谱将迅速用于 5G 和其他先进无线部署。该命令将做什么:• 在 3.7-4.0 GHz 频段增加移动分配(航空移动除外)。 • 通过委员会主导的公开拍卖,在 2025 年 9 月 30 日之前,将 280 兆赫和 20 兆赫的保护频段从现有使用过渡到美国本土的灵活使用。 • 为符合条件的空间站运营商提供加速清理的选项,具体时间安排如下:(1) 在 2021 年 9 月 30 日之前清理 120 兆赫(3.7-3.82 GHz);(2) 在 2023 年 9 月 30 日之前清理剩余的 180 兆赫(3.82-4.0 GHz)。如果他们达到这些基准,他们将从灵活使用许可证持有者那里获得加速搬迁付款。 • 要求美国本土现有的 FS 许可证持有者在 2023 年 9 月 30 日之前将其点对点链路迁移到其他频段。 • 向现有的 FSS 和 FS 许可证持有者提供由灵活使用许可证持有者支付的合理迁移费用的补偿,作为其许可证的条件。 • 建立迁移支付清算中心,管理迁移资金的接收、支付和审计,调解与成本相关的纠纷,并向委员会提供进度报告。 • 设立迁移协调员,协调现有地面站的迁移和过滤,确保在过渡期间和过渡后服务不间断。 • 在指定用于过渡到灵活使用的 280 兆赫频谱中为灵活使用许可证持有者制定服务和技术规则。 拟议修改顺序将产生以下影响:
词汇表 A A 加权:一种用于获得单个数字的技术,该数字代表包含广泛频率范围的噪声的声压级,其方式近似于耳朵的响应:人耳对所有频率的声音的反应并不相同,在低频和高频下的效率低于中频或语音频率。因此,使用 A 加权会弱化低频和高频。像差:与完美图像再现的任何差异。像差仪:一种用于测量光学像差的仪器。眼科像差仪的开发是为了测量无法通过自动验光仪或更传统的临床方法测量的复杂屈光不正。绝对阈值:导致感觉反应的刺激的最小值。适应:对新的身体和/或环境条件的生理调整(适应)。调节:眼睛的自动对焦过程,有助于在不同观看距离下保持清晰的视网膜图像。消色差:镜片组合(通常接触),可减少色差。声学:与声音或听觉有关。声学显示:呈现声学信息的显示。声场:对特定空间中声音行为的描述;特定开放、部分受限或完全封闭空间中一个或多个声源产生的声压分布。包含声波的空间区域 声阻抗:给定表面上平均的有效声压与流过该表面的声能有效体积速度之比。阻抗的单位是 Pa-s/m 3 或 dyne-s/cm 5 ,称为声欧姆 (Ω)。声学人体模型:人体头部(或人体头部和躯干)的复制品,在耳道中鼓膜位置放置麦克风,用于进行声学测量和声音记录。听神经:[参见听觉神经] 声压:[参见声压] 声反射:中耳肌肉的一种动作,可降低耳朵对高强度刺激的敏感度。声学特征:给定声源的特征声音,可用于识别声源。声波:通过弹性介质传播的机械扰动。声学:声音的产生、传输和接收的科学。执行器:用于或旨在用于移动或控制某物的设备。有源矩阵电致发光 (AMEL):一种电致发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵液晶显示器 (AMLCD):一种液晶显示器,其中每个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵 OLED (AMOLED):一种有机发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。主动降噪 (ANR):通过电子方式将背景噪声的相位反转 180 度并将此反转信号添加到原始噪声中来降低背景噪声的过程。动作空间:个人移动和做出决定的区域(半径 2 米内)。适应:感觉系统对长时间刺激的自动调整。[参见视觉适应和听觉适应]