这些临床指南是适当实践的一般指南,应根据临床医生的判断和患者在每种情况下的偏好来遵循。临床指南旨在提供信息以协助决策,并基于制定时可获得的最佳证据。临床指南可在 www.informme.org.au 上查看 - 引用:中风基金会。中风管理临床指南。澳大利亚墨尔本。© 未经中风基金会许可,不得以任何方式复制本出版物的任何部分。2022 年 6 月。
银行面临的主要挑战之一是数据的管理和存储,尤其是从非结构化历史数据转变为促进机器学习分析的格式。自动化已成为必不可少的工具,不仅用于常规报告,而且用于衡量风险。但是,自动化的有效性通常受到弱数据治理框架的阻碍。此外,尽管中央银行对加密货币保持谨慎和怀疑,但银行越来越多地利用分析和机器学习来改善信用风险预测和管理,同时还解决了网络和数字风险。
年龄(年)71.7±10.8性别(女性 /男性)%8(40%) /12(60%)MAS-ul 1.25(0-6)FMA-UL 51(29-66)脂肪5(1-5)MBI 94(1-5)MBI 94(46-100)平均±标准偏差; n(%);中值(最小值最小)。修改后的Ashworth Scale-upper肢体(MAS-ul); FUGL-MEYER评估 - Upper肢体(FMA-ul);法式手臂测试(FAT);和修改的Barthel指数(MBI)。
。cc-by-nc-nd 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审证明)预印版本的版权所有者此版本发布于2025年3月11日。 https://doi.org/10.1101/2025.03.10.25323712 doi:medrxiv preprint
脆弱已成为康复领域的关键问题。这种情况的特征是多方面的生物心理社会综合征,其中包括身体,认知和社会脆弱性,表明存在前可证明条件[1]。据报道,老年人的身体虚弱的患病率为17.4%[1],中风患者中升至27.0%[2]。此外,脆弱与其他与年龄有关的疾病(例如肌肉减少症,营养不良和身体活动较低的水平)密切相关,这导致了恶性循环[3]。在中风患者(通常与衰老相关的多种合并症)的患者中,脆弱的人越来越被认为是一个重要的治疗靶点。先前的研究报告说,中风患者的脆弱性与疾病严重程度[4],死亡率[5],日常生活活动受损(ADL)[6] [6],较低的生活质量(QOL)[7]和功能较差的结果[8]。
1。Jevinger,Åse。 迈向智能商品:特征,建筑和应用程序,2014年,博士学位论文。 2。 Dahlskog,史蒂夫。 数字游戏中的模式和程序内容生成:使用游戏设计模式的数字游戏自动生成,2016年博士学位论文。 3。 Fabijan,Aleksander。 开发正确的功能:客户和产品数据在软件产品开发中的作用和影响,2016年,许可论文。 4。 paraschakis,dimitris。 算法和伦理方面的推荐系统在电子商务中,2018年,许可论文。 5。 hajinasab,banafsheh。 在城市运输计划中基于多代理的模拟的动态方法,2018年博士学位论文。 6。 Fabijan,Aleksander。 大规模数据驱动的软件开发,2018年博士学位论文。 7。 Bugeja,约瑟夫。 智能连接的房屋:概念,风险和挑战,2018年,执照论文。 8。 alkhabbas,fahed。 朝着物联网中的新兴配置,2018年,许可论文。 9。 paraschakis,dimitris。 自动建议的社会技术方面:算法,伦理和评估,2020年,博士学位论文。 10。 Tegen,Agnes。 互动在线机器学习的方法,2020年,执照论文。 11。 Alvarez,Alberto。 探索混合定位过程中相互作用的动态特性Jevinger,Åse。迈向智能商品:特征,建筑和应用程序,2014年,博士学位论文。2。Dahlskog,史蒂夫。数字游戏中的模式和程序内容生成:使用游戏设计模式的数字游戏自动生成,2016年博士学位论文。3。Fabijan,Aleksander。 开发正确的功能:客户和产品数据在软件产品开发中的作用和影响,2016年,许可论文。 4。 paraschakis,dimitris。 算法和伦理方面的推荐系统在电子商务中,2018年,许可论文。 5。 hajinasab,banafsheh。 在城市运输计划中基于多代理的模拟的动态方法,2018年博士学位论文。 6。 Fabijan,Aleksander。 大规模数据驱动的软件开发,2018年博士学位论文。 7。 Bugeja,约瑟夫。 智能连接的房屋:概念,风险和挑战,2018年,执照论文。 8。 alkhabbas,fahed。 朝着物联网中的新兴配置,2018年,许可论文。 9。 paraschakis,dimitris。 自动建议的社会技术方面:算法,伦理和评估,2020年,博士学位论文。 10。 Tegen,Agnes。 互动在线机器学习的方法,2020年,执照论文。 11。 Alvarez,Alberto。 探索混合定位过程中相互作用的动态特性Fabijan,Aleksander。开发正确的功能:客户和产品数据在软件产品开发中的作用和影响,2016年,许可论文。4。paraschakis,dimitris。算法和伦理方面的推荐系统在电子商务中,2018年,许可论文。5。hajinasab,banafsheh。在城市运输计划中基于多代理的模拟的动态方法,2018年博士学位论文。6。Fabijan,Aleksander。 大规模数据驱动的软件开发,2018年博士学位论文。 7。 Bugeja,约瑟夫。 智能连接的房屋:概念,风险和挑战,2018年,执照论文。 8。 alkhabbas,fahed。 朝着物联网中的新兴配置,2018年,许可论文。 9。 paraschakis,dimitris。 自动建议的社会技术方面:算法,伦理和评估,2020年,博士学位论文。 10。 Tegen,Agnes。 互动在线机器学习的方法,2020年,执照论文。 11。 Alvarez,Alberto。 探索混合定位过程中相互作用的动态特性Fabijan,Aleksander。大规模数据驱动的软件开发,2018年博士学位论文。7。Bugeja,约瑟夫。 智能连接的房屋:概念,风险和挑战,2018年,执照论文。 8。 alkhabbas,fahed。 朝着物联网中的新兴配置,2018年,许可论文。 9。 paraschakis,dimitris。 自动建议的社会技术方面:算法,伦理和评估,2020年,博士学位论文。 10。 Tegen,Agnes。 互动在线机器学习的方法,2020年,执照论文。 11。 Alvarez,Alberto。 探索混合定位过程中相互作用的动态特性Bugeja,约瑟夫。智能连接的房屋:概念,风险和挑战,2018年,执照论文。8。alkhabbas,fahed。朝着物联网中的新兴配置,2018年,许可论文。9。paraschakis,dimitris。自动建议的社会技术方面:算法,伦理和评估,2020年,博士学位论文。10。Tegen,Agnes。 互动在线机器学习的方法,2020年,执照论文。 11。 Alvarez,Alberto。 探索混合定位过程中相互作用的动态特性Tegen,Agnes。互动在线机器学习的方法,2020年,执照论文。11。Alvarez,Alberto。 探索混合定位过程中相互作用的动态特性Alvarez,Alberto。探索混合定位过程中相互作用的动态特性
背景:中风是最常见的脑血管疾病之一,通常影响60岁及60岁以上的人。它导致各种需要运动和认知康复的残疾。中风后康复对恢复至关重要,特别是对于上肢障碍,这会影响大约80%的中风幸存者。常规康复经常面临诸如成本,可及性和患者依从性之类的障碍。相比之下,EHealth Technologies通过提供可访问,具有成本效益和引人入胜的康复解决方案提供了有希望的选择。目的:尽管许多系统的评论探讨了基于技术的康复的各个方面,用于中暑上肢恢复,但显然缺乏这些发现的全面综合。此差距提出了挑战,这主要是由于关注特定技术,这使理解这些干预措施的整体有效性变得复杂。因此,临床医生和研究人员可能会发现很难整体评估该领域,这可能会阻碍临床实践中明智的决策。本评论综合了从系统评价中评估eHealth技术干预措施对中风后的上肢恢复的有效性的证据。进行了两个主要问题:(1)基于EHEADH技术的疗法是否比中风康复的常规疗法更有效?(2)基于低成本技术的康复的主要临床考虑因素是什么?方法:使用基于人群,干预,比较,结果和研究设计(PICOS)框架的预定义纳入标准,在PubMed,PubMed,Scipus,Scopus,Embase和Google Scholar中进行了全面的文献搜索。包括英文发表的无日期限制的系统评价。Prisma(用于系统评价和荟萃分析的首选报告项目)流程图指导研究选择。使用多个系统评价(AMSTAR 2)标准评估方法学质量。结果:总共筛选了1792个记录,从而在2019年至2023年之间发表了7项系统评价。这些评论涵盖了95项研究,涉及2995名参与者,急性,亚急性和慢性中风阶段平均年龄为58.8岁。干预措施包括Telerebilitation,移动健康(MHealth)应用程序,增强现实(AR),虚拟现实(VR),可穿戴设备和Exergames。与常规疗法结合使用AR和VR表现出潜在的好处(例如,AR显示上肢功能的显着改善,标准化的平均差异为0.657; P <.001),而独立有效性的证据尚未确定,由于在研究设计,干预方案和结果测量中,由于异质性而导致异质性。由于方法上的局限性,大多数评论被评为质量较低。结论:EHealth Technologies有望通过在提供引人入胜的干预措施时解决诸如成本和可及性之类的障碍,以增强上肢康复后。然而,该领域仍然没有足够的证据来建立明确的疗效。未来的研究应集中于标准化方案,优化诸如剂量和任务特异性之类的神经康复原则,并改善方法论严格,以更好地评估这些干预措施的长期影响。
背景:脑血管疾病是全球第二大死亡原因,也是残疾负担的主要原因之一。人工智能的进步有可能彻底改变医疗保健的服务,尤其是在诸如缺血性中风管理等关键决策情况下。目标:本研究旨在评估GPT-4在为急诊科神经病学家提供临床支持的有效性,通过将其建议与急性缺血性中风管理中的专家意见和现实成果进行比较。方法:回顾性审查了100例急性中风症状患者的队列。用于决策的数据包括患者的病史,临床评估,成像研究结果以及其他相关细节。每个病例都独立呈现给GPT-4,该病例提供了有关治疗适当性,使用组织纤溶酶原激活剂以及需要进行血管内血栓切除术的规模建议(1-7)。此外,GPT-4估计了每位患者的90天死亡率概率,并阐明了其为每个建议的推理。然后将建议与中风专家的意见和实际治疗决策进行比较。结果:在我们的100例患者的队列中,GPT-4的治疗建议与专家意见(曲线下的面积[AUC] 0.85,95%CI 0.77-0.93)和实际治疗决策(AUC 0.80,95%CI 0.69-0.91)。值得注意的是,在某些情况下,GPT-4建议比人类专家更具侵略性的治疗方法,其中11个实例,GPT-4建议对专家意见进行组织纤溶酶原激活剂的使用。gpt-4在建议血管血栓切除术(AUC 0.94,95%CI 0.89-0.98)中与现实世界的决策显示出几乎完美的一致性,并且对组织纤溶酶原激活剂治疗(AUC 0.77,95%CI 0.68-0.86)进行了强有力的一致性。为了进行死亡率预测,GPT-4在其前25个高风险预测中的13例死亡中有10个(77%)(AUC 0.89,95%CI 0.8077-0.9739;危险比6.98,95%CI 2.88-16.9; p <.001; p <.001; p <.001; p <.001),诸如p <.001),诸如p <.001),诸如实践模型,均录制了> 70;和前提(AUC 0.77; P = .07)。结论:这项研究证明了GPT-4是急性中风管理中可行的临床决策支持工具的潜力。其提供可解释建议的能力,而无需结构化数据输入与
星形胶质细胞在血脑屏障(BBB)维持中起着至关重要的作用,但是在正常或病理条件下它们如何支持BBB完整性仍然很差。最近的证据表明,离子稳态是对BBB完整性重要的细胞机制。在当前的研究中,我们研究了星形胶质细胞特异性pH调节剂SLC4A4在BBB维护和修复中的功能。我们表明,正常星形胶质细胞形态复杂性和BBB功能需要星形胶质细胞SLC4A4。多摩尼克分析确定的CCL2的星形细胞分泌增加,SLC4A4缺失后精氨酸 - 非代谢失调。使用缺血性中风的模型,我们发现SLC4A4的损失加剧了BBB的破坏,该破坏是通过体内CCL2-CCR2途径的药理或遗传抑制来挽救的。一起,我们的研究将星形胶质细胞SLC4A4-CCL2和内皮CCR2轴视为控制BBB完整性和修复的机制,同时为针对BBB相关的CNS疾病的治疗方法提供了见解。