fi g u r e 4在这三个区域中的每个区域中观察到了物种丰富度。根据形态测定(红色色调)和Edna metabarcoding(蓝色色调)检测到的鱼(右)和无脊椎动物(左)物种(蓝色色调),根据鱼(右)和无脊椎动物(左)物种计算了观察到的物种丰富度。包括所有鱼类和无脊椎动物物种时,较浅的颜色是指物种丰富度,而较深的颜色是指在仅考虑塞尔斯鱼类物种时观察到的物种丰富度。盒子是从第一个四分位数到第三四分位数的,黑线代表中位数。晶须代表大小和小于第三四分位数的1.5倍的值。黑点是超出晶须范围的异常值。
科学家使用了锌空气电池,其中还原氧气产生了H 2 O 2。“锌是一种丰富且历史悠久的元素……在印度非常便宜和丰富,”跨学科能源研究中心(ICER),固态和结构化学单元(SSCU)的教授Aninda J Bhattacharyya说。
电致变色 (Electrochromic, EC) 是材料的光学属 性 ( 透过率、反射率或吸收率 ) 在外加电场作用下发 生稳定、可逆颜色变化的现象 [1] 。 1961 年 , 美国芝 加哥大学 Platt [2] 提出了 “ 电致变色 ” 的概念。到 1969 年 , 美国科学家 Deb [3] 首次报道了非晶态三氧化钨 (Tungsten Trioxide, WO 3 ) 的电致变色效应。随后 , 人 们开始对电致变色材料进行了广泛而深入的研究。 20 世纪 80 年代 , “ 智能窗 ” 概念提出后 [4] , 由于节能环 保、智能可控等优点 , 形成一波新的电致变色技术研究 热点 [5-10] 。随着研究的深入 , 特别是纳米技术的快速 发展 , 器件性能得到了大幅的提升 ( 图 1(a)) [11-13] , 电 致变色器件 (Electrochromic Device, ECD) 也逐渐实现 了产业化应用。 根据材料种类不同 , 电致变色材料可大致分为 有机电致变色材料和无机电致变色材料。相较而言 , 有机电致变色材料具有变色速度快、柔性好、可加 工性强和颜色变化丰富等优点 , 主要包括导电高分 子、紫罗精类小分子和金属有机螯合物等 [14] 。无机 电致变色材料具有光学对比度高、光学记忆性好和 环境稳定性高等优点 , 主要包括过渡金属氧化物以 及普鲁士蓝等 [15] 。目前 , 电致变色器件的结构主要 为类三明治结构 , 由两个透明导电层中间夹一层电 致变色活性层构成。根据电致变色材料种类不同 , 电致变色活性层可分为整体结构和分层结构。整体 结构是电致变色材料与电解质相互混合为一层 , 这 类结构主要针对紫罗精等小分子有机物。这类器件 在外加电场作用下 , 有机小分子扩散到电极表面或 以电解质中氧化还原剂为媒介发生氧化还原反应而 实现颜色变化 [16] 。分层结构是电致变色材料、电解 质和对电极 ( 或叫离子储存层 ) 依靠界面接触分层 ,
本综述记录了跨不同模态分类的表示方法,从纯粹基于内容的方法到利用外部结构化知识源的技术。我们介绍了与用于表示的三种范式相关的研究,即(a)低级模板匹配方法,(b)基于聚合的方法,和(c)深度表示学习系统。然后,我们描述现有的结构知识资源,并阐述使用此类信息丰富表示的必要性。接下来介绍利用知识资源的方法,根据如何利用外部信息进行组织,即(a)输入丰富和修改,(b)基于知识的细化和(c)端到端知识感知系统。随后,我们将进行高层次的讨论,总结和比较所提出的表示/丰富范式的优缺点,并在综述结束时概述相关研究成果和未来工作的可能方向。
新款 C3X 2K + 继承了其前身——屡获殊荣的 C3X 的核心双镜头设置,能够以 2K + 分辨率呈现更清晰的图像,细节丰富。该摄像机使用一个镜头捕捉环境亮度,另一个镜头捕捉颜色数据。通过应用 EZVIZ 的专有算法,两个图像合并为一个细节丰富、色彩逼真的最终图像。