征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
Teledyne Continental —TCM 重点介绍了两款发动机。第一款是 O-200 轻型发动机,额定功率为 100 马力,转速为 2750 rpm。该发动机干重 199 磅,针对轻型运动市场进行了优化,TBO 为 2,000 小时。该公司还提供了 TSIOF-550-J 全权数字发动机控制 (FADEC) 模型。这款涡轮增压发动机额定功率为 350 马力,干重 570 磅,采用单杆操作,基于电子顺序端口燃油喷射,无需混合控制。最后,该公司与 CenTex 合作,为 Cirrus SR22 和 SR22 GTS 系列飞机提供 IOF-550-N 发动机 FADEC 改装。 FADEC 发动机消除了磁电机,提供飞行中发动机状态和诊断,以及全面的发动机监控,减少了维护,降低了运营成本,并提高了可靠性。www.GenuineContinental.com / 251-438-3411 / www.Centex.aero / 254-752-4290
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
1. 数据清理和验证工作--------------------------------------------------------- 4 2. 生产力损失--------------------------------------------------------------------------4 3. 成本增加------------------------------------------------------------------------------------------5 4. 数据完整性受损------------------------------------------------------------------------------------------ 5 5. 难以实现数据充分利用--------------------------------------------------------------------------5 6. 集成延迟------------------------------------------------------------------------------------------- 5 7. 用户采用率降低-------------------------------------------------------------------------------------5 利用人工智能清理和丰富产品数据-----------------------------------------6 了解机器学习和自然语言处理------------------------------------------6 AICA 在革命性产品数据管理中的作用--------------------------------------- 7 确保高质量产品数据的 7 个最佳实践----------------------------------------------------------- 8 最后的想法----------------------------------------------------------------------------------------------------- 8
“最大的挑战是开发一个数值模型,该模型可以模拟晚期天生条件下生物地球化学周期的复杂,动态行为。,我们通过在其他时间和目的中使用类似模型,将不同的组件一起使用和耦合在一起,以模拟挥发性火山事件的后期。
对高度多样化的植物分类单元的保护和研究可能是一个巨大的挑战,因为具有潜在复杂关系的不可管理的物种通常会导致物种鉴定困难。cyrtandra举例说明了这些挑战。CA缺乏身份资源。170种伯恩斯·西拉德拉(Bornean Cyrtandra)的物种使许多标本未识别,从而减慢了该地区的研究工作。本项目通过使用在线生物多样性数据管理平台XPER3(https://app.xper.fr/)来描述为高度多样化的分类单元创建识别资源的工作流程来解决这一问题。该密钥现已发布并可以在线自由访问。在线多功能分类键通过将可访问的用户友好平台与动态分类研究工具相结合,为生物多样性研究提供了有希望的工具,使其特别适合于解决高度多样化的分类学组。
•Michiels带来了广泛的种子行业经验,以促进领导力和创新•Agtech初创公司宣布在2025年3月4日在SE六个市场上推出现场试验,这是2025年3月4日 - 领先的瑞典Agritech公司Olsaro,该公司在其独特的族裔遗传学平台上快速稳固地持续了一家人,该公司已公开了众多的Michi eimant of Michi of Michi of Michi of Michie of Michie of Michie。在种子行业具有广泛的背景以及在拜耳,林格林和先正达的领导经验多年的背景,米歇尔斯带来了种子创新和全球市场扩张方面的宝贵专业知识。她将与PINC的负责人Marika King共同主席,因为Olsaro继续在多个地理位置上扩大其气候韧性特征和种子。
饮食蛋白已被证明会影响长期健康结果,具体取决于其数量和来源。有人提出,肠道菌群与饮食蛋白的相互作用介导了饮食蛋白对健康结果的某些影响。但是,尚不清楚哪种特定宿主反应促进了不同动植物来源的饮食蛋白质的健康影响。此外,特定的宿主反应是由饮食蛋白质来源与肠道菌群的相互作用介导的,哪些宿主反应是由饮食蛋白直接引起的。我们使用元蛋白质组学来量化饮食,宿主和微生物蛋白在常规和无菌小鼠的粪便样品中,从六种不同的动植物和动物来源喂养纯化的饮食蛋白,包括酪蛋白,鸡蛋,鸡蛋,大豆,糙米,豌豆和酵母。我们表征了六种饮食蛋白质来源的宿主粪便蛋白质组的差异以及每个来源的常规小鼠和无菌小鼠之间的差异,以确定宿主对不同饮食蛋白源的反应以及肠道微生物群在介导这些反应中的作用。我们发现,饮食蛋白的来源和肠道菌群的存在或不存在繁殖剂对粪便宿主蛋白质组中饮食蛋白源的反应。与免疫反应,消化和屏障功能有关的宿主蛋白在带有和没有肠道菌群的不同蛋白质源中差异很大。宿主反应中的这些变化与微生物组成的变化和蛋白质消化率的差异相关。我们的结果表明,饮食蛋白质来源如何通过与肠道菌群的相互作用影响宿主生理的几个方面。
抽象背景超出观察到的细胞结构和线粒体的改变,将罕见的遗传突变与受脱敏突变影响的患者的心力衰竭发展联系在一起的机制尚不清楚,这是由于缺乏相关的人类心肌细胞模型。阐明线粒体在这些机制中的作用的方法,我们研究了源自人类诱导的多能干细胞的心肌细胞,这些干细胞带有杂合的DES E439K突变,这些干细胞是从患者中分离出来的,或者是由基因编辑产生的。为了提高生理相关性,在各向异性的微图案表面上培养心肌细胞以获得伸长和比对的心肌细胞,或者作为心脏球体,以创建微生物。在适用的情况下,通过突然死于携带DES E439K突变的家族的患者的心脏活检证实了心肌细胞的结果,并从五个对照健康的供体中验尸中的心脏样本。结果杂合DES E439K突变导致心肌细胞的总体细胞结构的巨大变化,包括细胞大小和形态。最重要的是,突变的心肌细胞显示出改变的线粒体结构,线粒体呼吸能力和代谢活性,让人联想到患者心脏组织中观察到的缺陷。最后,为了挑战病理机制,我们将正常的线粒体转移到突变体心肌细胞内,并证明这种治疗方法能够恢复心肌细胞的线粒体和收缩功能。结论这项工作突出了DES E439K突变的有害作用,证明了Mito-软骨异常在与Desmin相关心肌病的病理生理学中的关键作用,并为这种疾病打开了新的潜在治疗观点。
野生动植物管理是监督和保护野生动植物种群及其栖息地的实践,以确保生物多样性,生态系统稳定以及动物和人类的幸福感。随着人类活动继续改变生态系统,野生动植物管理的重要性在近几十年中显着增长,从而导致栖息地丧失,破碎和物种的衰落[1]。该学科结合了生物学,生态学,法律和经济学原则,以创建可持续的战略,以保护野生动植物,同时考虑人类需求。野生动植物管理涉及监测物种种群,栖息地恢复,保护计划以及影响野生动植物的其他人类活动的调节。在本文中,我们将探讨野生动植物管理的关键组成部分,面临的挑战以及为维持野生动植物保护与人类发展之间平衡所采用的策略[2]。
