摘要:已经提出了片上微区谐振器(MRR)来构建时间延迟的储层计算(RC),该计算提供了有希望的配置,可用于具有高扩展性,高密度计算和易于制造的计算。但是,单个MRR不足以为具有多种内存要求的计算任务提供足够的内存。MRR通过光学反馈波导满足了巨大的记忆需求,但以其较大的足迹为代价。在结构中,超长的光学反馈波导实质上限制了可扩展的光子RC集成设计。在本文中,提出了一个时间删除的RC,该RC是通过利用基于硅的非线性MRR与一系列线性MRRS结合使用的。这些线性MRR具有高质量的因素,为整个系统提供了足够的存储能力。我们在具有多种内存要求的三个经典任务上进行定量分析和评估拟议的RC结构的性能,即Narma 10,Mackey-Glass和Santa Fe Chaiotial Chaotion Chaoticerseries的预测任务。在处理NARMA 10任务时,提出的系统具有超长的基于波导的系统,具有与MRR相当的性能,这需要大量的内存能力。尽管如此,与具有基于光反馈波导的系统的MRR中超长的反馈波导相比,这些线性MRR的总长度明显小于三个数量级。这种结构的紧凑性对光子RC的可伸缩性和无缝整合具有重要意义。
抽象!新兴的非易失性记忆被广泛研究为最大化能源效率,并且因为它们可以实现所谓的内存计算。逻辑内存(LIM)范式是计算中内存的子集,它重点介绍了内存内布尔操作的执行。在最受欢迎的解决方案中,魔术和Felix承诺非输入破坏性操作,作为经典计算范式,因此可以重新使用多个操作的输入数据集。在本文中,我们在各种操作条件下分析了某些重要的LIM实现(Magic Nor and and Felix NAND)的电气行为。我们的结果表明,保证非输入破坏性操作(对于Felix NAND)并非微不足道,并且由于非理想的中间结果而导致的多项操作存在真正的困难。
映射人蛋白质组中所有蛋白质的可辅助性或潜在的可药用性是基于质谱的共价化学蛋白质组学的核心目标。实现这一雄心勃勃的目标需要高吞吐量和高覆盖样品制备以及液相色谱串联质谱分析,以进行数百至数千种反应性化合物和化学探针。在此规模上进行化学蛋白质组学筛选从实现增加样品吞吐量的技术创新中有益。在这里,我们通过建立用于同位素标记的蛋白质组学串联质量标签(SCIP-TMT)蛋白质组学平台的基于硅烷的可切合连接器来实现这种愿景,该平台通过早期样品池的区别,从而增加样品制备吞吐量。SCIP-TMT配对一种自定义兼容的SCIP捕获试剂,该试剂易于使用市售的TMT试剂以高产量功能化。一组SCIP-TMT的合成和基准测试显示样品制备时间的大幅度减少,高覆盖范围和高精度定量。通过筛选一组聚焦的四个半胱氨酸反应性电力,我们证明了SCIP-TMT对化学蛋白质组靶狩猎的实用性,从而确定了789个总配体半胱氨酸。以其与已建立的富集和量化协议的兼容性区分,我们预计SCIP-TMT很容易转化为广泛的共价化学蛋白质组应用。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年8月30日发布。 https://doi.org/10.1101/2024.08.30.610185 doi:Biorxiv Preprint
图2:Evodiff会产生逼真的和结构上的蛋白质序列。(a)用于评估Evodiff序列模型产生的序列的可折叠性和自洽的工作流量。(b-c)可折叠性的分布,通过序列PLDDT的序列(b)的序列PLDT衡量,以及通过scperperxity(C)测量的自谐度,用于测试集,Evodiff模型和基础线的序列(n = 1000个序列;每个模型;盒子图显示Me-Dian和Internetrokile范围)。(d)序列PLDDT与测试集(灰色,n = 1000)和640M参数OADM模型Evodiff-seq(蓝色,n = 1000)的序列相对于scperperxity。(e)从Evodiff-Seq(640m参数OADM模型)中成功表达和表征无条件的世代的结构和指标。omegafold预测,并报告了每个结构的平均PLDDT。%的覆盖率和对最高爆炸击中的%身份在每个设计下面表示。(f)(e)设计序列的圆二色性(CD)光谱。(g)从CD光谱(蓝色)与Omegafold(灰色)推断出的每个序列的结构组成。Alphafold预测包含在图中S6进行比较。
摘要:本文提出了一种基于驾驶模式识别、驾驶工况预测和模型预测控制的串联式混合动力汽车能量管理策略,以在维持电池荷电状态的同时改善燃油消耗。为了进一步提高计算效率,对模型进行了离散化和线性化,将MPC问题转化为二次规划问题,通过内点法可以有效地求解。利用Matlab/Simulink平台进行仿真,仿真结果验证了状态预测方法的可行性和所提方法的性能。此外,与基于规则的方法相比,预测控制策略成功地提高了混合动力汽车的燃油经济性。
© 2018 IEEE。允许个人使用该材料。对于当前或将来的任何媒体中的所有其他用途,必须获得 IEEE 的许可,包括出于广告或促销目的重印/重新发布该材料、创建新的集体作品、转售或重新分发到服务器或列表,或在其他作品中重复使用本作品的任何受版权保护的部分
1植物科学计划,生物与环境科学与工程部(BESE),阿卜杜拉科学技术大学(KAST)国王;沙特阿拉伯的塔瓦尔。2 Csiro农业和食物;堪培拉,澳大利亚澳大利亚首都地区。3福建泰旺作物害虫的生态控制国家主要实验室,遗传学教育部的主要实验室,繁殖和多种作物的多种利用,植物免疫中心,福建农业和林业大学;中国富州。4 Bioscience计划,Smart Health Initiative,Bese,Kaust;沙特阿拉伯的塔瓦尔。5明尼苏达大学植物病理学系;美国明尼苏达州圣保罗。 6植物科学系,自由州大学;布隆方丹,南非。 *相应的作者。 电子邮件:peter.dodds@csiro.au,brande.wulff@kaust.edu.sa†这些作者为这项工作做出了同样的贡献。 摘要:大多数植物抗性基因编码膜锚定的受体样蛋白或细胞内核苷酸结合和富含亮氨酸的重复(NLR)受体。 在小麦和大麦中,串联激酶(TKS)已成为新的抗药性决定因素。 了解小麦茎锈蚀蛋白SR62 TK的作案手法,我们鉴定了两个遗传相互作用者 - SR62 TK功能所需的宿主基因和相应的真菌AVRSR62效应子。 我们发现SR62基因座是由编码SR62 TK和NLR(SR62 NLR)的挖掘模块组成的。 AVRSR62与SR62 TK的N末端激酶结合。5明尼苏达大学植物病理学系;美国明尼苏达州圣保罗。6植物科学系,自由州大学;布隆方丹,南非。 *相应的作者。 电子邮件:peter.dodds@csiro.au,brande.wulff@kaust.edu.sa†这些作者为这项工作做出了同样的贡献。 摘要:大多数植物抗性基因编码膜锚定的受体样蛋白或细胞内核苷酸结合和富含亮氨酸的重复(NLR)受体。 在小麦和大麦中,串联激酶(TKS)已成为新的抗药性决定因素。 了解小麦茎锈蚀蛋白SR62 TK的作案手法,我们鉴定了两个遗传相互作用者 - SR62 TK功能所需的宿主基因和相应的真菌AVRSR62效应子。 我们发现SR62基因座是由编码SR62 TK和NLR(SR62 NLR)的挖掘模块组成的。 AVRSR62与SR62 TK的N末端激酶结合。6植物科学系,自由州大学;布隆方丹,南非。*相应的作者。电子邮件:peter.dodds@csiro.au,brande.wulff@kaust.edu.sa†这些作者为这项工作做出了同样的贡献。摘要:大多数植物抗性基因编码膜锚定的受体样蛋白或细胞内核苷酸结合和富含亮氨酸的重复(NLR)受体。在小麦和大麦中,串联激酶(TKS)已成为新的抗药性决定因素。了解小麦茎锈蚀蛋白SR62 TK的作案手法,我们鉴定了两个遗传相互作用者 - SR62 TK功能所需的宿主基因和相应的真菌AVRSR62效应子。我们发现SR62基因座是由编码SR62 TK和NLR(SR62 NLR)的挖掘模块组成的。AVRSR62与SR62 TK的N末端激酶结合。这种触发了C末端激酶的位移,允许其募集SR62 NLR以激活免疫反应。了解这种两分量抗性复合物的机制将有助于工程和繁殖,以实现耐用性。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
2024(国际电子博览会)还展出了11英寸平板电脑和32英寸电视,这带来了更好的反应,具有更好的色彩,更高的亮度,较高的亮度,较低的功耗和AR/VR。这种表现已经被商业化,现有的自我发射OLED