© 2018 IEEE。允许个人使用该材料。对于当前或未来的任何媒体中的所有其他用途,必须获得 IEEE 的许可,包括出于广告或促销目的重印/重新发布该材料、创作新的集体作品、转售或重新分发到服务器或列表,或在其他作品中重复使用本作品的任何受版权保护的部分
铅电池由“一组单元”组成。累加器/电池的标称电压约为2.1 V,因此12V电池由六个累积的累加器/电池组成,串联并通过焊接铅连接。(一系列串联或平行连接的单元格被称为模块),细胞为(在塑料容器中TTER/填充并用盖子密封。每个细胞包含并联连接的“正和负电极”(板)对,每对之间有一个分离器。“分离器”通常是矩形多孔板,插入正板和负板之间,并具有以下重要特征:
横向效应对大型串联太阳能电池 EQE 测量的影响 S. Kasimir Reichmuth 1,2 , A. Fell 1,3 , G. Siefer 1 , M. Schachtner 1 , D. Chojniak 1 , O. Fischer 1,2 , M. Mühleis 1 , M. Rauer 1 , J. Hohl-Ebinger 1 , MC Schubert 1 1 弗劳恩霍夫太阳能系统研究所 ISE, Heidenhofstrasse 2, 79110 弗莱堡, 德国 电子邮件: kasimir.reichmuth@ise.fraunhofer.de, 2 Albert-Ludwigs-University, INATECH, Emmy-Noether-Strasse 2, 79110 弗莱堡, 德国 3 AF模拟,Landstr。 33a,79232 年 3 月,德国 摘要:大规模钙钛矿/硅 (PSC/Si) 串联太阳能电池中的横向不均匀电池参数可能会显著影响器件性能。可以使用电致发光 (EL)、光致发光 (PL) 和热成像方法来分析吸收器的横向质量。除了对电池性能的整体影响外,这种横向效应通常不会在串联器件的 EQE 和 IV 特性中考虑,但可能会导致错误的测量结果。因此,我们认为有必要采用大面积 3D PSC/Si 串联模拟来了解横向不均匀性的影响,以及与非理想测量条件(例如太阳能电池的小面积或不均匀照明)的相互作用。我们使用 3D 模拟软件 Quokka3 的串联插件进行全电池 3D 串联模拟,该软件使用“等效电路”模型处理钙钛矿顶部电池表层,也可以处理 Si 底部电池,而不是求解漂移扩散模型。我们通过模拟和实验来量化非均匀电池特性(例如低局部分流电阻或电池吸收器的不均匀性)在 EQE 测量期间与照明和偏置条件相互作用的影响。通过模拟深入了解横向效应特别有趣,因为在通常亚稳态的 PSC/Si 串联电池中对此类详细效应进行实验研究极具挑战性。关键词:多结太阳能电池、校准、模拟、钙钛矿、III-V 族半导体 1 引言 最近,钙钛矿/硅串联电池 (PSC/Si) 在实验室大小样品中显示出 31.25% [1] 的效率,并且 6 英寸晶圆级 PSC/Si 已认证的效率为 26.8 ±1.2 % [2]。同时,首次商业化已宣布将于今年进行,旨在扩大尺寸和提高产量 [3]。在工业实施中,为实验室大小的电池建立的工艺适用于大规模产出。与小型实验室电池相比,横向效应对于全晶圆大小的电池可能更为重要。这可以解释在扩大规模过程中钙钛矿吸收剂的效率下降的原因 [4]。空间不均匀性对电池性能和这些电池的特性都有影响,例如,如果这些方法仅依赖于局部照明而不分析器件的整个区域,则会产生很大的误差。这对于 EQE 和 IV 特性至关重要,因为这可能会使结果与真实特性产生很大偏差,从而导致误解甚至误导电池开发。为了展示其重要性,我们通过实验和模拟,以局部和全照明 EQE 测量为例,研究了横向效应的影响。除了可能由不均匀的薄膜厚度引起的光学横向不均匀性之外,我们还研究了进一步/更复杂的电气 EQE 测量伪影的影响。这种伪影在两端多结器件中很常见,是由低分流电阻(R 分流)或反向击穿特性引起的 [5–7],并且取决于偏置电压和偏置照明的光谱辐照度。借助最近发布的 3D 太阳能电池模拟工具 Quokka3 的串联功能,我们研究了局部分流等横向缺陷如何影响这种 EQE 伪影。
伊斯兰阿扎德大学阿利亚·卡图尔分公司电气工程系0000-0001-7004-3311; 2。0000-0001-6841-534X; 3。0000-0003-3720-8318 doi:10.15199/48.2024.05.47缓解亚同步共振和改进的低电压 - 电压直通乘车乘坐串联双率连接感应感应机器的能力,使用桥梁固体固体固体型固体固体型FCL摘要。串联电容器补偿方法被广泛用于传输线,以扩大传输线的主动功率能力。他们为连接大规模风电场(WFS)的连接提供了一种实用的解决方案,以将风能传输到长距离负载中心的网格中。集成大规模WFS与电力系统可能导致亚同步共振(SSR)现象和通过(LVRT)通过串联电容补偿传输线连接的WFS中的(LVRT)挑战(LVRT)挑战。本文建议使用桥梁型固态故障电流限制器(BSFCL)来阻尼SSR并增强集成到电力系统的串联电容补偿WFS的LVRT性能。本研究中建模的WF是一台聚集的双喂养机器(DFIM)。修改了第一个标准基准IEEE系统,并在PSCAD/EMTDC软件中进行了模拟,以显示BSFCL功能,用于抑制SSR并改善本文中WFS的LVRT要求。考虑到模拟结果,发现BSFCL有效地减轻了SSR振荡,并满足了集成到功率系统的串联电容式补偿WF的LVRT要求。Streszczenie。串联传感器补偿方法被广泛用于传输线,以增加传输线的主动能力。提供了一个实用的解决方案,可让您将大型风电场(FW)连接到网络,以长距离施加负载中心将风能发送到网络。大规模FW与功率系统的集成可以导致同步共振现象(SSR)以及与串行,电容补偿传输线连接的FW中与低压传递(LVRT)相关的挑战。本文建议使用半导体桥 - 型短电路电源限制器(BSFCL)来抑制SSR,并提高LVRT PE LVRT效率,并与电容性补偿与电容系统集成在一起。WF是具有双电源(DFIM)的聚合感应机。在本文中,第一个标准设计系统IEEE已在PSCAD/EMTDC软件中进行了修改和模拟,以显示BSFCL抑制SSR并提高PF的LVRT要求的能力。考虑到模拟的结果,发现BSFCL有效地舒缓了SSR振荡,并满足了与电源系统集成的电容补偿的串行FW的LVRT要求。通常,WF远离负载中心,需要长的传输线以将风力传输到它们。按串联电容器进行补偿传输线是一种实用方法,是增加长距离传输线功率传输能力[1]。两个SSR事件的细节均在参考文献[2-3]中列出。美国。美国。(减轻同步共振,并提高基于连续补偿的感应机,通过使用桥梁类型FCL的半导体FCL的感应机,在风电场中行驶的能力:风场,风场,风场,LVRT,LVRT,SSR,SSR,DFIM,BSFCL关键字: Wind,LVRT,SSR,DFIM,BSFC简介升级了风能的贡献和传播是与电网相关的WF的两个主要挑战。howver,串联电容器的应用可能导致WFS中的亚同步共振(SSR)发生[2]。此外,使用串联电容器减少了透射阻抗,并导致在短路断层期间增加WF故障电流[1-2]。SSR会导致在一个或多个子同步频率下增加与电力系统和发电机轴的能量交换,这可能会加载到风力涡轮机的故障,然后从功率系统中断开WF集成网格代码。基于LVRT要求,WF必须在不同的断层中保留服务,以确保WFS中的SSSR EVENS。在2009年,由于德克萨斯州南部的SSR事件,大量WFS的风力涡轮机被销毁。美国[4]。 在2012年,这种现象在中国圭恩地区的WF中重复。 2017年8月至10月,得克萨斯州发生了三个SSR Circumpstances。 所有这些都出现在与电力系统连接的基于DFIMS的串联综合WF中。 有两种方法可以减轻DFIM- 中的SSR美国[4]。在2012年,这种现象在中国圭恩地区的WF中重复。2017年8月至10月,得克萨斯州发生了三个SSR Circumpstances。所有这些都出现在与电力系统连接的基于DFIMS的串联综合WF中。有两种方法可以减轻DFIM-
XT2N,XT2S,XT2H,XT2L,XT2V,XT2N DC,XT2S DC,XT2L DC,XT2X DC,UT2N,UT2S,UT2S,UT2H UIMP:8KV; UI:1000V; UE:XT2:220/230/240VAC,380VAC,400/415/440VAC,660/690VAC,800VAC,250VDC,500VDC; XT2 DC:250VDC,500VDC; UT2:220/230/240VAC,380VAC,415VAC,660/690VAC;在:1.6、2、2.5、3.2、4.5、6.3、8、10、12.5、16、20、25、32A(TMD); 40、50、63、80、100、125、160a(TMA); 16、20、25、32、40、50、63、80、100、125、160A(TMG); 1、2、3、4、8.5、12.5、20、32、52、80、100、160a(MF,MA); 10,25,63,100,160a(ekip ls/i; ekip g-ls/i; ekip n-ls/i; ekip z-ls; ekip lsi; ekip lsi; ekip lsig; ekip lsig; ekip dip ls/i; ekip g dip ls/i; ekip ls/i; ekip i; ekip i; ekip i; ekip m dip i; ekip ls ekip ls ekip ls ekip dip dip dip dip dip d; 20,32,52,100A(Ekip M-I); 25,63,100,160a(Ekip M-Liu,Ekip M Dip Liu); 25,63,100A(Ekip M-lriu,Ekip m Dip lriu); 10,25,63,100,160a(ekip dip lig; ekip dip lsi; ekip dip lsig; ekip b dip lsi; ekip b dip lsig); 40,63,100,160a(Ekip Touch LSI; Ekip Touch lsig; Ekip Touch测量LSI; Ekip Touch测量LSIG; Ekip Hi-Touch LSI; Ekip Hi-Touch lsig); 40,63,100A(Ekip M Touch LRIU); XT2N:220/230/240VAC:ICS = ICU = 65KA; 380VAC,400/415/440VAC,250VDC(串联2个极点),500VDC(串联3杆),500VDC(串联4杆):ICS = ICU = 36KA; 660/690VAC:ICS = ICU = 10KA; XT2S:220/230/240VAC:ICS = ICU = 85KA; 380VAC,400/415/440VAC,250VDC(串联2杆),500VDC(串联3杆),500VDC(串联4杆):ICS = ICU = ICU = 50KA; 660/690VAC:ICS = ICU = 12KA; XT2H: