QE for Display [RX] 2.0.0 及更高版本能够支持基于 SEGGER Microcontroller 高性能图形库的 emWin GUI。QE for Display [RX] 2.1.0 及更高版本还能够支持使用 Aeropoint GUI for RX 创建的 GUI,它是 CRI Middleware 的 GUI 中间件。这样就可以选择最适合您需求的 GUI 绘制工具。此外,QE for Display [RX,RA] 3.1.0 及更高版本支持串行连接的 LCD,即使在未配备图形 LCD 控制器 (GLCDC) 的 RX MCU 上也可以显示 LCD。
抽象目标。在急性冠状动脉综合征(ACS)的情况下,急性心肌缺血可能导致心肌梗塞。因此,及时的决定已经处于院前阶段,对于尽可能地保留心脏功能至关重要。串行心电图,将急性心电图与先前记录的同一患者的(参考)ECG进行比较,有助于识别缺血诱导的心电图变化,通过纠正个体间的ECG变异性。最近,深度学习和串行心电图的结合为检测新兴心脏疾病提供了有希望的结果。因此,我们当前研究的目的是应用新型的高级重复结构和学习程序(ADVRS&LP),该过程专门设计用于疗程前阶段急性心肌缺血检测,并使用串行ECG使用。方法。数据属于减法研究,其中包括1425个心电图对,194(14%)ACS患者和1035(73%)对照。每个ECG对的特征是28个序列特征,这些特征构成了Advrs&LP的输入,Advrs&Lp是创建监督神经网络(NN)的自动建设性过程。我们创建了100个NN,以补偿由于有限数据集的随机数据划分而导致的统计频率。我们根据接收者 - 操作 - 特征曲线,敏感性(SE)和Speciifity(SP)的曲线(AUC)将获得的NNS的性能与逻辑回归程序(LR)程序(LR)程序(LR)程序(LR)程序(UNI-G)进行了比较。主要结果。明显的能力。nns(中位AUC = 83%,中位SE = 77%和中位SP = 89%)在统计学上(P值低于0.05)的测试性能比LR提出的测试性能高(中位数AUC = 80%,中位数SE = 67%,中位数SP = 81%),SP = 81%),Median sp = 82%(Medianians = 82%)和82%(82%)和72%= 72%和72%= 72%。总而言之,阳性结果强调了串行ECG比较在缺血检测中的价值,而在概括和临床适用性方面,Advrs&LP创建的NNS似乎是可靠的工具。
从 TMP108 读取时,写入操作存储在指针寄存器中的最后一个值用于确定读取操作读取哪个寄存器。要更改读取操作的寄存器指针,必须将新值写入指针寄存器。此操作通过发出 R/W 位为低的从属地址字节,然后发出指针寄存器字节来完成。无需其他数据。然后,主机可以生成启动条件并发送 R/W 位为高的从属地址字节以启动读取命令。有关此序列的详细信息,请参见图 3。如果需要从同一寄存器重复读取,则无需连续发送指针寄存器字节,因为 TMP108 会存储指针寄存器值,直到下一次写入操作更改它为止。
多模态刺激引起的脑电图 (EEG) 信号可以驱动脑机接口 (BCI),研究表明可以同时使用视觉和听觉刺激来提高 BCI 性能。然而,还没有研究调查多模态刺激在快速串行视觉呈现 (RSVP) BCI 中的影响。在本研究中,我们提出了一种结合了人工面部图像和人工语音刺激的快速串行多模态呈现 (RSMP) BCI。为了阐明视听刺激对 RSMP BCI 的影响,分别应用了扰乱图像和掩蔽声音来代替视觉和听觉刺激。我们的研究结果表明,视听刺激提高了 RSMP BCI 的性能,并且 Pz 处的 P300 有助于提高分类准确性。 BCI 在线准确率达到 85.7 ± 11.5%。总之,这些发现可能有助于开发更好的注视独立 BCI 系统。
•加密和解密模块在PCS Sublayer处执行保存8b/10b符号的加密/解密的格式。•p/s和s/p模块平行于串行和串行到并行模块,这些模块是从光学链路传输和接收的。
当芯片选择 (CS) 处于非活动状态(高电平)时,ADDRESS 和 I/O CLOCK 输入最初被禁用,DATA OUT 处于高阻抗状态。当串行接口将 CS 置于活动状态(低电平)时,转换序列从启用 I/O CLOCK 和 ADDRESS 以及将 DATA OUT 从高阻抗状态移除开始。然后,串行接口向 ADDRESS 提供 4 位通道地址,向 I/O CLOCK 提供 I/O CLOCK 序列。在此传输过程中,串行接口还从 DATA OUT 接收先前的转换结果。I/O CLOCK 从主机串行接口接收长度在 10 到 16 个时钟之间的输入序列。前四个 I/O 时钟将 4 位地址加载到地址寄存器的 ADDRESS 上,选择所需的模拟通道,接下来的六个时钟提供对模拟输入进行采样的控制时序。
a。状态LED b。USB(a)接口c。USB(micro-b)接口d。电池插槽e。以太网接口f。串行接口(COM2)g。串行接口(com1)h。电源连接器 *1此标记指示有关电源接线的安全消息。*2此标记标识了有关电池的安全消息。
神经反馈 (NF) 是一种复杂的学习场景,因为任务包括尝试心理策略,同时处理反馈信号,该反馈信号表示大脑区域被激活,需要自我调节并充当潜在的奖励信号。为了剖析这些子组件,我们在两种范式中获得了与有效自我调节相关的全脑网络:并行,其中任务是同时执行的,将反馈与策略执行相结合;串行,其中任务是连续执行的,将反馈处理与策略执行分开。20 名参与者在 2 周的 18 个疗程中尝试使用功能性磁共振成像 (fMRI) NF 控制他们的前中扣带皮层 (aMCC),使用认知和情感心理策略。我们分析了串行和并行范式中 aMCC 激活最大的 NF 训练运行中的全脑 fMRI 激活。串行范式中策略执行和反馈处理周期的相等长度允许以相等的功率描述两个任务子组件。得到的激活图与功能注释的内在连接脑图 (BM) 在空间上相关。平行条件下的大脑激活与基底神经节 (BG) 网络、扣带回-岛叶网络 (CON) 和额顶叶控制网络 (FPCN) 相关;串行策略执行条件下的大脑激活与默认模式网络 (DMN)、FPCN 和视觉处理网络相关;而串行反馈处理条件下的大脑激活主要与 CON、DMN 和 FPCN 相关。额外的比较表明,BG 激活是平行范式的特征,而超缘回 (SMG) 和颞上回 (STG) 激活是串行范式的特征。
Christu Jyothi技术与科学研究所,Jangaon,Telangana,印度摘要:串行 - 外交接口(SPI)协议也称为异步串行界面规范,用于单个主/单个/多个从属之间的通信。随着导致电路高复杂性的奴隶数量的增加,可以为SPI模块的自我测试能力功能创造需求,以测试无故障电路。内置测试(BIST)在回答电路的答案中,并有助于降低维护和测试成本。在这些论文中介绍了带有单个主和单个从配置的Bist嵌入式SPI模块的设计,此处的8位在整个模块上转移了8位,其中正在测试的电路(剪切)与Bist特征进行了自我测试,以进行其正确性。此SPI模块是使用Verilog硬件说明语言(HDL)设计的,它使用EDA Playground平台用于应用程序,例如应用程序特定集成电路(ASIC)或芯片(SOC)上的系统。SPI代表串行外围界面。这是一种用于连接低速设备的串行通信协议。它是由摩托罗拉在1980年中期开发的,用于片间通信。通常用于与闪存,传感器,实时时钟(RTC),模数转换器等进行通信。这是一个全双工同步串行通信,这意味着可以同时从两个方向传输数据。SPI的主要优点是传输数据而不会中断。在此协议中一次可以发送或接收许多位。在此协议中,设备在主奴隶关系中进行了传达。主设备控制从设备,并且从设备从主设备中获取指令。串行外围接口(SPI)的最简单配置是单个从和单个主的组合。但是,一个主设备可以控制多个从设备。关键字:串行外围接口