摘要:临界功率 (CP) 概念的研究和应用已持续数十年。CP 测试可估计两个不同的参数 CP 和 W ′,它们分别描述有氧和无氧代谢能力。各种数学模型已用于估算各种运动方式的 CP 和 W ′ 参数。最近,CP 模型已应用于动态恒定外部阻力 (DCER) 锻炼。在各种连续、全身、动态运动中建立的相同双曲线关系也已在上身、下身和全身 DCER 锻炼中得到证实。负荷与重复次数关系的渐近线定义为临界负荷 (CL),曲率常数为 L ′ 。CL 和 L ′ 可以通过用于推导 CP 的相同线性和非线性数学模型来估算。本综述的目的是 (1) 概述连续、动态锻炼方式中的 CP 概念;(2) 描述该模型在 DCER 锻炼中的最新应用; (3)展示如何应用 DCER 锻炼的数学建模来进一步了解疲劳和个人表现能力; (4)就估计 CL 测试参数的方法提出初步建议。
假设指向精度具有特定程度,激光对任何类别目标的致死性将由功率水平,波长和光学维度确定。这些因素通常在设计整体系统时交易。较短的波长使设计人员能够使用较小的功率或较小的光学尺寸,并且仍然达到所需的致死性,尽管大气湍流的效果在较短的波长下更为明显。较高的功率或更大的光学元件可以在较长的波长下实现相同的效果,而降解较少。但是,这些参数中的每个参数都有限制。例如,在大气中在任何给定波长中工作的激光将具有定义其最大杀伤力的“临界功率水平”。在较高的功率水平下,与大气相互作用导致的光束降解实际上会减小沉积在目标上的能量。高功率输出也可以超过光学系统的公差,从而导致系统故障。15
线性到非线性飞秒激光脉冲在空气中聚焦的能量极限 Yu.E.Geints 1、DVMokrousova 2、DVPushkarev 2、GERizaev 2、LVSeleznev 2、I.Yu.Geints 1,3、AAIonin 2 和 AAZemlyanov 1、1 VE Zuev 俄罗斯科学院西伯利亚分院大气光学研究所,1,Zuev 院士广场,托木斯克 634055,俄罗斯 2 PN 俄罗斯科学院列别捷夫物理研究所,53 Leninskii pr.,莫斯科 119991,俄罗斯 3 莫斯科国立大学物理学院,列宁戈里,莫斯科 119991,俄罗斯 * 电子邮件:ygeints@iao.ru 摘要 紧密聚焦高功率超短激光的传播光学介质中的脉冲通常受介质光学非线性的显著影响,这会显著影响非线性焦点周围的激光脉冲参数,并导致不可避免且通常不受欢迎的焦腰空间扭曲。我们介绍了在不同空间聚焦下飞秒 Ti:蓝宝石激光器脉冲在空气中传播的实验研究和数值模拟结果。我们集中研究了不同聚焦方式下的光谱角和空间脉冲变换 - 从线性到非线性,当脉冲成丝时。据我们所知,我们首次发现了激光脉冲数值孔径范围 - 即从 NA = 2·10 -3 到 5 10 -3(对于 1 mJ 的激光脉冲能量),其中激光脉冲频率角谱和脉冲空间形状的畸变最小。通过数值模拟,我们发现了各种聚焦条件下的阈值脉冲能量和峰值功率,在此范围内,空气中的线性和强非线性激光脉冲聚焦之间会发生转变。结果表明,随着脉冲数值孔径的增大,该能量极限降低。我们的研究结果确定了足够的激光脉冲数值孔径和能量,以获得焦点附近具有良好光束质量的最大激光强度,适用于各种激光微图案化和微加工技术。1.引言光学介质的强非线性通常在高峰值功率激光脉冲在该介质中的传播中起着显著的作用,这导致脉冲时空自调制和其光谱成分的大规模变化,发生在脉冲高强度区域,即在伴随相对较高的自由电子密度的细长等离子体通道的激光束丝中。在空气和其他透明介质(如水、固体电介质等)中,这种丝状物的峰值强度可高达数百TW/cm2,而平均丝状物横向尺寸因传播介质、激光波长和聚焦条件的不同而从几个微米到数百微米不等[1]。在丝状化过程中,激光脉冲发生深度自相位调制,这导致其频率角谱显著丰富。这也导致了宽超连续谱翼[2]和高发散圆锥发射环[3]的形成。到目前为止,已经有大量研究致力于超短激光脉冲的成丝及其可能的应用(例如,参见评论[1,4,5])。在峰值功率P 0 超过自聚焦临界功率P c 的准直或聚焦激光脉冲传播过程中,成丝现象开始于所谓的非线性焦点。可以使用半经验马尔堡公式相当准确地估计到非线性焦点的距离z sf