由于合金的成分空间几乎是无限的,因此设计耐腐蚀高熵合金 (CR-HEA) 具有挑战性。为此,需要高效可靠的高通量探索性方法。为此,当前的工作报告了一种基于第一性原理的方法,利用功函数、表面能和耐腐蚀性之间的相关性(即,根据定义,功函数和表面能分别与合金固有的耐腐蚀性成正比和反比)。使用由密度泛函理论 (DFT) 计算得出的离散表面能和功函数,评估了 fcc Co-Cr-Fe-Mn-Mo-Ni 功函数和表面能的两个贝叶斯 CALPHAD 模型(或数据库)。然后使用这些模型对不同的 Co-Cr-Fe-Mn-Mo-Ni 合金成分进行排序。观察发现,排序后的合金具有与之前研究的耐腐蚀合金相似的化学特性,这表明所提出的方法可用于可靠地筛选具有潜在良好固有耐腐蚀性的 HEA。
信息安全负责人面临着一项具有挑战性的任务:面对日益复杂的情况,提供一致可靠的安全性,越来越多样化的攻击表面,越来越多的警报量以及越来越复杂且难以检测的网络攻击。转向基于云的安全信息和事件管理(SIEM)解决方案,使组织可以使用自动机功能来协助其安全操作团队和高级AI/机器学习(ML)功能来检测高级威胁。Microsoft委托Forrester咨询到
接口 [FS+1]:视野仅限于接口问题,因此涉及的创新努力有限。我们认为接口是功能流(现在是所讨论的系统)与其相应超级系统组件之间发生力、材料和信息交换的狭窄区域。因此,皮托管 + 静态系统的物理组件将形成功能流。一端的接口将是数据来源的飞机外表面上的皮托管。另一个接口将是驾驶舱仪表上处理后数据的视觉显示。第二个接口还将包括向数字飞行计算机输入数据。
2系统管理功能包括管理数据库,网络组件,工作站或服务器所必需的功能。这些功能通常需要特权用户访问。用户功能与系统管理功能的分离是物理或逻辑。组织可以使用不同的计算机,操作系统,中央处理单元或网络地址将系统管理功能与用户功能分开;通过采用虚拟化技术;或这些或其他方法的某种组合。系统管理功能与用户功能的分离包括Web管理接口,这些接口对任何其他系统资源的用户采用单独的身份验证方法。系统和用户功能的分离可能包括隔离不同域上的管理接口以及其他访问控件。3个托管接口包括网关,路由器,防火墙,警卫,基于网络的恶意代码分析,虚拟化系统或在安全体系结构中实现的加密隧道。4个与内部网络分离的子网络被称为非军事区或DMZ。
高级电池充电器和维护器MUS 4.3测试和充电可提供额定的电池,额定功率为1.2AH至160AH,以进行维护。充电器通过诸如专利自动脱硫程序以及特殊的重新调节功能等功能解决了广泛的电池问题,该功能将恢复并恢复深度放电和分层电池。专利的浮点/脉冲维护功能使充电器非常适合长期维护。重新束缚和模式在两者中单独或一起运行,并且程序为用户提供了极大的灵活性。
第 3 章 探索您的计算机 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 使用 P-to-P 2.0 充电功能为您的计算机充电 . . . . . . . . . . . . . . . 32
布尔功能在许多加密原始素中起着主导作用。它们在哈希功能[13,5]甚至对称块加密[21]中特别使用。这些功能将一定数量的变量作为输入,以返回唯一的布尔值二进制值。蜂窝自动机规则可以视为布尔函数。某些蜂窝自动机规则具有有趣的加密性能,相对于传递给它们的输入而言,无需生成伪随机或混沌输出。这些规则可以产生非线性的输出,并且完全独立于将其作为输入传递给它们的位。它们可用于加密应用,例如哈希或阻止加密。使用这些规则避免了针对密码原语的已知攻击,例如线性密码分析[1]。对这些混乱功能的第一项研究是由Wolfram在1983年进行的,后者发现了30条具有3个变量的规则[20]。从那时起,就提出了许多布尔函数的分类[17,2]。许多科学论文研究了布尔功能在密码学中的使用[6]。尤其是在细胞自动机中使用布尔函数来构建哈希函数[10,9,24],或流和封闭密码[16,11]。