引用:Bhatkar P.B.(2025)通过生成AI增强银行安全性中的弹性姿势:预测性,主动和自适应策略,《欧洲计算机科学和信息技术杂志》,第13(2),43-50页,摘要:这项研究探讨了生成人工智能在增强银行安全性弹性方面产生人工智能的变革潜力。通过结合定量模拟和定性评估的混合方法方法,我们演示了生成性AI模型如何显着改善脆弱性检测,事件响应时间和业务连续性计划。我们的发现表明漏洞检测提高了30%,恢复时间减少了45%,这表明AI驱动的方法代表了银行安全框架的范式转移。该研究为实施生成的AI解决方案提供了一个全面的框架,同时应对实践挑战和道德考虑。关键字:生成AI,银行安全,弹性,脆弱性检测,预测分析,自适应策略
摘要本文考虑了用于预测处理的大脑体系结构的演变。我们认为,预测感知和作用的大脑机制并不是像我们这样的先进生物的晚期进化加成。相反,它们逐渐源自更简单的预测循环(例如自主和运动反射),这些循环是我们早期进化祖先的遗产,并且是解决其适应性调节基本问题的关键。,我们以生成模型的形式表征了更简单的复合大脑,这些模型包括增加层次宽度和深度的预测循环。这些可能从简单的稳态基序开始,并在进化过程中以四种主要方式进行详细说明:这些包括将预测性控制的多模式扩展到同类循环中;它复制以形成多个感官循环,以扩大动物的行为曲目;以及具有层次深度的生成模型的逐渐捐赠(处理以不同的空间尺度展开的世界各个方面)和时间深度(以未来面向的方式选择计划)。反过来,这些阐述为越来越复杂的动物所面临的生物调节问题提供了解决方案。我们的建议将神经科学理论(预测性处理)与不同动物物种中脑体系结构的进化和比较数据保持一致。关键字:预测处理;主动推断;大脑进化;脑建筑;模型选择;自然选择。
氮化物材料中的氮掺杂是改善材料特性的一种有希望的方法。的确,GESBTE相位变化合金中的N掺杂已证明可以极大地提高其无定形相的热稳定性,这是确保最终相变存储设备的数据保留所必需的。尽管建议这种合金中的N掺杂导致GE-N键的优先形成,但有关键的进一步问题,尤其是SB-N和TE-N,并且结构排列尚不清楚。在本文中,我们介绍了使用大量的N含量从0到50 at at 50 at,我们介绍了沉积的元素GE,SB和TE系统及其氮化物(即Gen,SBN和10合金)的研究。%。通过傅立叶变换红外和拉曼光谱法研究了AS沉积合金。我们确定与GE-N,SB-N和TE-N键形成相关的主动振动模式,强调了N融合对这些元素系统结构的影响。我们进一步定性地将Gen,SBN和十个实验光谱与相关理想氮化物结构的“从头开始”进行了比较。最后,对氮化元素层的分析扩展到N掺杂的GESBTE合金,从而在记忆技术中采用的此类三元系统中对氮键有更深入的了解。
摘要 — 连接的移动设备数量的强劲增长对有效利用可用网络资源提出了新的挑战。代码域非正交多址 (NOMA) 技术似乎是一种非常有效的解决方案。每个设备都使用其分配的代码同时传输其数据以及用户标识符,而无需任何资源预留交换,从而节省了宝贵的无线资源。然而,这需要一个能够盲目检测活跃用户的接收器,这非常复杂。在量子架构有希望的叠加特性的驱动下,本文的目标是在 NOMA 的背景下调整和应用量子 Grover 算法进行活跃用户检测 (AUD),以减轻搜索复杂性。将这种改进的 Grover 算法与最佳经典最大似然 (ML) AUD 接收器以及基本的经典传统相关接收器 (CCR) 进行了比较。根据接收信号的信噪比 (SNR) 评估 AUD 概率的基准。我们表明,我们改进的 Grover 算法在高 SNR 范围内非常有前景。索引词 —NOMA、AUD、最大似然、量子算法、Grover 算法
7 8 Andrea Serino* 1,2, , Marcie Bockbrader* 3 , Tommaso Bertoni 1 , Sam Colachis 3p,4c , Marco 9 Solca 2 , Collin Dunlap 3,4 , Kaitie Eipel 3p , Patrick Ganzer 4 , Nick Annetta 4 , Gaurav 10 Sharma 4p,9c , Pavo Orepic 2 , David Friedenberg 4 , Per Sederberg 5 , Nathan Faivre 2,6 , Ali 11 Rezai** 7 , Olaf Blanke** 2,8 12 13 1 MySpace 实验室,临床神经科学系,洛桑大学医院 14 (CHUV),洛桑,瑞士; 2 瑞士日内瓦联邦理工学院 (EPFL) 大脑思维神经修复研究所和中心认知神经科学实验室,生物技术校区;3 美国俄亥俄州哥伦布市俄亥俄州立大学物理医学与康复系;4 美国俄亥俄州哥伦布市巴特尔纪念研究所医疗器械与神经调节系;5 美国弗吉尼亚州夏洛茨维尔市弗吉尼亚大学心理学系;6 格勒诺布尔阿尔卑斯大学、萨瓦大学勃朗峰分校,CNRS,LPNC,38000 格勒诺布尔,法国;7 美国西弗吉尼亚州摩根敦市西弗吉尼亚大学洛克菲勒神经科学研究所;8 瑞士日内瓦大学医院神经病学系;9 美国俄亥俄州代顿市空军研究实验室。 24 25 * 这些作者的贡献相同;** 这些作者共同指导了这项工作。 26 p 工作时的先前隶属关系;c 当前隶属关系 27 28 29 * 这些作者的贡献相同;** 这些作者共同指导了这项工作。 30
摘要。目的。适应性是脑机接口 (BCI) 领域的一大挑战。这需要机器能够最佳地表达有关用户意图及其自身行为的推理。适应性可以在多个维度上进行,因此需要一个通用且灵活的框架。方法。我们采用最全面的大脑 (自适应) 功能计算方法之一:主动推理 (AI) 框架。它需要一个与机器交互的用户的显式 (概率) 模型,这里涉及 P300 拼写任务。这采用离散输入输出状态空间模型的形式,建立机器的 (i) 观察值(例如 P300 或错误电位)、(ii) 表示(用户拼写或暂停的意图)和 (iii) 操作(闪烁、拼写或关闭应用程序)之间的联系。主要结果。使用来自 18 名受试者的真实 EEG 数据进行模拟,结果表明 AI 能够显著提高比特率 (17%),优于最先进的方法,例如动态停止。意义重大。由于其灵活性,该模型不仅能够实现最佳(动态)停止,还能实现最佳闪烁(即主动采样)、自动纠错以及在用户不再看屏幕时关闭。重要的是,这种方法使机器能够灵活地在所有这些可能的操作之间进行仲裁。我们将 AI 展示为一个统一的通用框架,用于在给定的 BCI 环境中实现灵活的交互。
扩展迷你软件设施,包括34,551平方米英尺。自由存储设施和拆除现有的4,000平方米ft。建筑现场[包括包裹32-39-15-00000-7000- 00004.0和32-39-15-00000-7000- 00001.0]
多年来,点击和生物正交反应一直是人们研究的焦点。这些高性能化学反应的开发是为了满足当今生物环境中常用的化学反应通常无法提供的要求,例如选择性、快速反应速率和生物相容性。点击和生物正交反应在生物医学领域因纳米药物工程而受到越来越多的关注。在这篇综述中,我们研究了从 2014 年至今的一系列文章,使用术语“点击化学和纳米粒子 (NPs)”来强调这种类型的化学在涉及用于生物医学应用的 NP 的应用中的应用。这项研究确定了点击和生物正交化学在被动和主动靶向方面提供的主要策略,用于具有用于成像和癌症治疗的特定和多种特性的 NP 功能化。在最后一部分,还讨论了一种新颖且有前景的“两步”靶向 NP 的方法,称为预靶向 (PT);更详细地介绍了该策略的原理以及从 2014 年至今列出的所有研究。
大型孔径天线不仅可以为传统的通信服务和雷达提供帮助,还可以实现新的通信,遥感,深空探测和电力传输航天器的新方法。较高的天线孔可保证更高的信号分辨率和信噪比,而其精度则驱动其空间分辨率和灵敏度。在过去,开发高孔径天线是一项技术挑战,受到高刚度和重组件而针对发射限制的部署的限制,但最近在轨道上自主制造和组装方面的进步为直接在太空中直接开发的大型和光线结构的发展打开了大门。但是,如果许多文献中的许多作品都集中在空间中的大型天线制造上,那么[1]中的许多工程挑战,例如表面准确性,航天器稳定性和部署可靠性,仍然对这些技术的实际去风险施加限制。拟议的项目具有提出大型天线的欧洲端到端轨内组装方案的发展,并通过小规模的实验基准表明其关键技术挑战。通过利用团队中可用的技能建模和控制大型柔性结构[2,3]和天线技术[4,5],该项目将重点放在: