下图为 PowerPOD 2.0 布局图,主回路 S1 有 P1 保护装置,S1 长度不受限制;PowerPOD 柜顶输入主铜排(例如 4000A 主铜排,如下图右侧蓝线 S1 所示)有进线断路器(4000A ACB,如下图 P1 所示)保护,S1 长度不受限制。支路 S2 从 O 点开始到支路保护装置 P2 的 B 点,S2 可以没有任何过载或短路保护(不受 P1 保护),最长 3m。如下图 A 所示,支路 S2 是指 UPS 输入柜顶主铜排 O 点到 UPS 输入保护装置 P2 的 B 点之间的路径(红线,导线截面积小于 4000A 母排)。 S2 不受电缆入口断路器(4000 A ACB,下图右侧的 P1)保护,因此最长为 3 米。
本文采用两种方法来评估灵活性在绿色氨工厂中的作用:用于工厂设计的线性规划 (LP) 和用于工厂运行的模型预测控制 (MPC)。前一种方法已用于其他绿色氨生产分析,11 – 15 尽管本文提出了一种修改方法来确定存储单元的循环对氨价格的影响程度,并给出了新的灵敏度结果。后一种 MPC 方法在孤岛绿色氨工厂中的应用是新颖的,并且为 LP 提供的结果设置了保护栏。MPC 的目的不是设计专门确定氨工厂运行参数(温度、压力、进料比等)的控制回路;相反,MPC 的目的是作为一种确定氨工厂设定点的算法。换句话说,这里介绍的 MPC 类似于级联控制布置中的主回路,决定电力分配和氨产量。对于这两个模型,天气数据均来自 ERA5,并使用标准涡轮机曲线 13 和 Python 上的 PVLib 模块转换为风能和太阳能数据。16