摘要 — 本文介绍了 40 nm 嵌入式非易失性存储器技术中新型高密度三栅极晶体管的设计、实现和特性。深沟槽用于集成与主平面晶体管并联的两个垂直晶体管。由于内置沟槽,所提出的制造工艺增加了晶体管的宽度,而不会影响其占用空间。平面 MOS 结构的电压/电流特性与新型三栅极晶体管的特性进行了比较。新架构提供了改进的驱动能力,导通状态漏极电流是其等效标准 MOS 的两倍,并具有较低的阈值电压,适用于低压应用。最后,在工作电压范围内验证了栅极氧化物和结的可靠性。索引术语 — 多栅极晶体管、MOS 器件、沟槽晶体管、驱动能力、闪存。
尽管物理模型可以非常成功地消除大气和地形影响,但它们本质上依赖于精确的光谱和辐射传感器校准以及崎岖地形中数字高程模型 (DEM) 的精度和适当的空间分辨率。此外,许多表面都有双向反射行为,即反射取决于照明和观看几何。如果观察不是在太阳主平面进行,则通常假设各向同性或朗伯反射定律适用于小视场 (FOV < 30 o,扫描角度 < ± 15 o) 传感器。然而,对于大 FOV 传感器和/或靠近主平面的数据记录,自然表面的各向异性反射行为会导致图像中的亮度梯度。这些影响可以通过将数据标准化为天底反射值的经验方法消除。此外,对于在低当地太阳高度角下照射的崎岖地形区域,这些影响也会发挥作用,并且可以通过 ATCOR 包中包含的经验方法来处理。
学术机构、州、联邦和私人机构一直在合作开发用于大气应用的相控阵雷达。目前,麻省理工学院林肯实验室 (MIT-LL) 正在开发一种多功能、二维 (2-D)、双极化、平面和多功能 S 波段雷达系统 [6]。这一开发中最大的挑战之一是实现可接受的极化性能 [7]。为了克服这一限制,国家强风暴实验室 (NSLL) 和俄克拉荷马大学正在评估为实际扫描不变天气测量制作圆柱极化相控阵雷达 (CPPAR) 原型的可能性 [8]。大气协同自适应传感中心 (CASA) [9] 提出的另一种方法包括低功耗、低成本的双极化相控阵雷达。为了克服极化失真,CASA 雷达仅在相对容易获得交叉极化隔离的主平面上执行电子扫描 [9]。