AGA 空-地-空 AGA_MS 空-地-空移动站 AGL 地面以上 ATG 空对地(也称为 A2G) BS 基站 DC 直流 DMO 直接模式操作 ECC 电子通信委员会 EIRP 等效全向辐射功率 EMC 电磁兼容性 HF 高频 HPSC 高度优选用户类别 LA 位置区 MCCH 主控制信道 MMI 人机接口 MS 移动站 PD 分组数据 PLA 优选位置区 PSC 优选用户类别 PSS 公共安全频谱 PTT 按下通话开关,也称为 pressel RF 射频 RSSI 无线电信号强度指示 RX 接收 SC 用户类别 SwMI 交换和管理基础设施 SWR 驻波比 TMO 集群模式操作 TX 发送 TX/RX 发送/接收 V+D 语音加数据(集群基础设施) VHF 甚高频
AGA 空-地-空 AGA_MS 空-地-空移动站 AGL 高于地面 ATG 空对地(也称为 A2G) BS 基站 DC 直流 DMO 直接模式操作 ECC 电子通信委员会 EIRP 等效全向辐射功率 EMC 电磁兼容性 HF 高频 HPSC 高度优选用户类别 LA 位置区 MCCH 主控制信道 MMI 人机接口 MS 移动站 PD 分组数据 PLA 优选位置区 PSC 优选用户类别 PSS 公共安全频谱 PTT 按下通话开关,也称为 pressel RF 射频 RSSI 无线电信号强度指示 RX 接收 SC 用户类别 SwMI 交换和管理基础设施 SWR 驻波比 TMO 集群模式操作 TX 发送 TX/RX 发送/接收 V+D 语音加数据(集群基础设施) VHF 甚高频
AI 空中接口 APL 自动人员定位 AVL 自动车辆定位 C-SCCH 公共辅助控制信道 CSL 小区服务等级 DTX 不连续传输 ETSI 欧洲电信标准协会 GPS 全球定位系统 GTSI 集团 TETRA 用户身份 HSD 高速数据 ITSI 个人 TETRA 用户身份 LIP 位置信息协议 MCCH 主控制信道 MS 移动台 OPTA 作战战术地址 PAMR 公共接入移动无线电 PMR 私人移动无线电 PTT 按下通话 RF 无线电频率 RSSI 接收信号强度指示器 SC 用户类别 SDS 短数据服务 TA 定时提前 TEDS TETRA 增强数据服务 TETRA 地面集群无线电 TR 技术报告 URS 用户需求规范 V+D 语音加数据 WGS 84 世界大地测量系统 1984
A1.1.4 离机接收器 原始 S723 系统文档中未使用术语“离机接收器 (OMR)”。尽管如此,本 SOW 中使用术语离机接收器 (OMR) 来指代脉冲扩展器和脉冲压缩器单元。OMR 环境如图 5 所示。脉冲扩展后的信号组成如图 8 所示。离机接收器的作用是在收到信号处理器的触发后生成扫频脉冲,该脉冲可用于调制发射频率或作为测试脉冲来检查接收器系统的操作。此外,8 条光束中的每一条光束上的目标回波和 SLB 通道的输出均被压缩。仅使用一种类型的散射器。离机接收器还从频率合成器接收系统时钟 (23.45MHz)。使用该系统时钟建立 13.68MHz 频率 (IF 参考频率和第二 LO)。范围时钟由主控制单元(MCU)制作,它是信号处理器的一部分。
图 5 显示了典型的开关模式。5 V 和 12 V 输出接收不同数量的能量包。主控制方案有效地消除了交叉调节效应,即一个输出上的负载会影响其他输出。但是,这种方法的一个明显缺点是会产生可听见的噪声。在每个周期中,都会向其中一个输出发送一个能量脉冲,由于每个输出具有不同的反射电压,因此变压器磁芯中磁能变化的速度也会根据哪个输出接收能量而变化。这种磁能变化将引起次谐波变压器激励频率,该频率低于主开关频率。该次谐波频率的性质取决于两个输出之间的负载分布。如果该次谐波频率在可听见的范围内,大约在 1 kHz 和 25 kHz 之间,则很可能会产生可以听到的声音。磁致伸缩效应将被变压器质量的共振频率放大,该共振频率通常也位于此区域。这种可听见的噪声是开关模式在特定条件下运行方式的副产品。
公司将可配置、高功率电机驱动器与精确遥测功能相结合,设计易于抗辐射。位于低温冷却器附近的遥测聚合单元 (TAU) 通过在本地数字化传感器数据以传输回控制器,最大限度地减少了敏感低温冷却器反馈的衰减和污染,而主控制单元 (MCU) 中的多个 500 W 驱动通道以高达 95% 的效率提供功率波形。模块化设计概念允许在需要额外通道时添加驱动卡,或移除驱动卡以减小尺寸、重量和功耗。TAU 包含多达 14 个外部传感器,总数据速率高达每秒 800,000 个样本,由控制软件动态分配给任何遥测组合。可以通过安装商用组件或利用替代控制方案降低抗辐射控制器组件的成本来实现低成本版本的电子设备。在雷神公司进行了一次铜板演示,其中驱动了高容量 RSP2 (HC-RSP2) 低温冷却器,温度和振动控制回路在高功率和低温下关闭。本文讨论了 MACE 的开发、测试和经验教训。
Iris Technology Corporation 开发的模块化高级低温冷却器电子设备 (MACE) 系统将可配置的高功率电机驱动器与精确遥测功能相结合,其设计可承受辐射加固。位于低温冷却器附近的遥测聚合单元 (TAU) 通过在本地数字化传感器数据以传输回控制器,最大限度地减少了敏感低温冷却器反馈的衰减和污染,而主控制单元 (MCU) 中的多个 500 W 驱动通道可提供高达 95% 效率的功率波形。模块化设计概念允许在需要更多通道时添加驱动卡,或移除驱动卡以减小尺寸、重量和功耗。TAU 集成了多达 14 个外部传感器,总数据速率高达每秒 800,000 个样本,由控制软件动态分配给任何遥测组合。可以通过安装商用组件或利用替代控制方案来降低抗辐射控制器组件的成本,从而实现电子设备的低成本版本。雷神公司进行了一次演示,演示中驱动了高容量 RSP2 (HC-RSP2) 低温冷却器,温度和振动控制环路在高功率和低低温下关闭。本文讨论了 MACE 的开发、测试和经验教训。
内容: 1. 简介 – 设备描述 1.1. 简要技术说明 1.2. 基本技术参数 1.3. 交付内容 – 物理接口描述 1.3.1. 卡式连接器接口描述 2. 安装 2.1. 安全警告图例 2.2. 安全说明 2.3. 防火 2.4. 监管使用 2.5. 选择存储站的位置 2.6. HES 站与配电网和太阳能输入的电源连接 2.6.1. HES 站连接 – 交流电缆类型 2.6.2. 交流连接设计 2.6.2.1. 负载管理输入 2.6.3. 将 HES 站连接到太阳能直流板(串) 2.6.3.1. 用于连接太阳能设备的电线和连接器: 2.6.3.2. 将太阳能电池板分支连接到 MPPT 直流输入(STRING1、STRING2) 2.6.3.3. HES 站 MPPT 太阳能直流输入的运行参数: 2.7. 有线连接 HES 诊断访问:以太网 - WEB 客户端 3. 调试 3.1. 调试程序 3.1.1. 启动设备: 3.1.2. 根据 EN 50438ed2 启动和连接: 3.2. HES 运行模式 3.2.1. 各个模式属性的描述 3.2.2. 设置自动运行的主控制 4. HES 站维护。 5. 连接到客户和服务 SW 接口 5.1. 登录 5.2. 用户门户 5.2.1. 控制接口 - 概览 5.2.2. 诊断接口 - 平衡 5.2.3. 诊断接口 - 分析 5.2.4. 诊断接口 - 日照预测 5.2.5. 控制接口 - 控制 5.2.6. 控制接口 - 数据
第2章关于Micro800控制器的控制器编程软件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13获取连接的组件工作台软件。。。。。。。。。。。。。。。。。。。。。。。。。13使用连接的组件工作台软件。。。。。。。。。。。。。。。。。。。。。。。。。。。。13个控制器在运行模式下更改。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13使用运行模式更改(RMC)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13个未分配的更改。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>15 RMC内存。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 RMC的限制。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16使用运行模式配置更改(RMCC)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17使用Modbus RTU通信。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19使用以太网/IP通信。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。节省20日光。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 22个安全考虑。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 22断开主要力量。 。 。 。 。 。节省20日光。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22个安全考虑。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22断开主要力量。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23个安全电路。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23电源分配。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23个主控制继电器电路的定期测试。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23权力考虑。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23隔离变压器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23电源inrush。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23电源损失。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24输入状态在电源下降。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>其他24个线路的Tyes。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。24防止热量过多。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24主控制继电器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24使用紧急停车开关。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25
是 6 叶 Dowty Rotol 后掠形螺旋桨。单个控制杆控制每个螺旋桨/发动机组合。辅助动力装置 (APU) 将被安装在尾部。飞机可容纳两名飞行员、一名观察员、两名乘务员、行李架、卫生间,并设有厨房。有一个前后储物舱和一个后货舱。飞机的最大飞行高度为 31,000 英尺。Saab 2000 具有全液压驱动的电子控制方向舵,并将具有全液压驱动的电子控制升降舵作为后续设计修改。动力升降舵控制系统 (PECS) 提供左右升降舵表面的控制和动力驱动。PECS 还提供飞机稳定性增强和配平功能。拟议的升降舵系统在许多方面与方向舵设计相似,由模拟和数字电路混合组成,没有机械备份。控制柱连接到线性可变差动传感器 (LVDT)、操纵杆阻尼器、自动驾驶伺服器、带断开装置的线性弹簧,并与电子断开装置互连。连接到控制柱的位置传感器 (LVDT) 向两个电动升降舵控制单元 (PECU) 提供信号。每个 PECU 通过两个独立的伺服执行器通道 (SAC) 控制两个升降舵伺服执行器 (ESA)。每个 SAC 细分为一个主控制通道和一个监控通道。由一个 PECU 控制的四个 ESA 中的两个定位一个升降舵侧。ESA 有两种操作模式:主动和阻尼。当 PECU 的模式控制电流和液压可用时,将产生主动模式。一个主动伺服执行器足以操作升降舵表面。升降舵伺服执行器阀门和执行器柱塞位置反馈由位置传感器 (LVDT) 提供。PECU 通过配平继电器和两台数字空气数据计算机连接到一台飞行控制计算机。飞行控制计算机还向自动驾驶伺服器提供信号。操纵杆到升降舵传动装置是指示空速 (IAS) 的功能。配平和稳定性增强基于 IAS、垂直加速度和襟翼位置。操纵杆、配平和升降舵位置和状态信息被馈送到发动机