S 模式是一种组合式二次监视雷达(信标)和地空地数据链路系统,能够提供必要的飞机监视和通信,以支持未来密集交通环境中的 ATC 自动化。它能够与当前的空中交通管制信标系统 (ATCRBS) 进行共信道操作,因此可以在延长的 ATCRBS 到 S 模式的过渡期内以较低的用户成本实施。S 模式和 ATCRBS 之间的根本区别在于寻址或选择哪架飞机将响应询问的方式。· 在 ATCRBS 中,选择是空间性的;询问器主波束内的所有飞机都会响应。当主波束扫过天空时,所有角度都会被询问,并且雷达天线视线范围内的所有飞机都会响应。在 S 模式下,每架飞机都分配有一个唯一的地址代码。通过在询问中包含飞机的地址代码来选择哪架飞机响应询问。因此,每个询问都针对特定的飞机。在 S 模式询问和答复中使用选择性地址允许包含发往或来自特定飞机的消息,从而为地空和空地数字数据链路提供基础。
在电信智能天线系统中,透镜可用于主波束聚焦、旁瓣抑制和波束切换目的 [1]。透镜具有各种各样的形状和材质,但介电损耗非常低。陶瓷在较高温度下具有良好的稳定性,并且其介电常数可以调整。同时,它也有一个缺点,那就是制造温度高,导致制造过程中的能耗高,从而增加了生产成本。室温制造法 (RTF) 发明后,锂钼氧化物 (Li 2 MoO 4 ,LMO) 陶瓷的水基悬浮液可以在室温下制造,而不必在 400 ◦ C 以上的温度下制造 [2]。它的相对介电常数为 5.1,在 9.6 GHz 时的损耗角正切值为 0.0035 [3, 4]。此外,已经展示了 4 GHz 下的 LMO 陶瓷贴片天线 [5]。在 LMO 混合物中添加不同的介电材料可以改变其介电性能。 Li 2 MoO 4 -TiO 2 复合材料在 9.6 GHz 时的相对介电常数为 6.7–10.1,损耗角正切值为 0.0011–0.0038,具体取决于其体积百分比 [6]。(1 − x )Li 2 MoO 4 - x Mg 2 SiO 4 在 9 GHz 时的介电常数为 5.05–5.3(未提及损耗角正切)[7]。3D 打印 LMO 在 9.6 GHz 时的介电常数为 4.4,损耗角正切值为 0.0006 [8],据报道,超低介电常数 LMO 复合材料的介电常数为 1.12,损耗角正切值为 0.002 [9]。LMO 复合材料的射频应用研究尚处于早期阶段。在本信中,制作了直径为 30 毫米的钼酸锂 (Li2MoO4,LMO) 空心玻璃微球 (HGMS) 复合材料和透镜,并在 Ku 波段用波导馈源进行了分析。