最大注入能力与储存许可证中规定的最大注入能力之比(实施限流后) 09:00 – 10:00 70% 10:00 – 11:00 35% 11:00 – 15:00 0% 15:00 – 16:00 35% 16:00 – 17:00 70%
缩写:4 级和 5 级、“假正常”和“限制性”左心室充盈;d、舒张末期测量;E、早期二尖瓣峰值速度;E:A、E 与晚期二尖瓣峰值速度(A)之比;E:E 0 、E 与E 0 之比;E 0 、舒张早期通过组织多普勒成像测得的二尖瓣外侧环峰值速度;HR、心率;IVRT、等容舒张时间;IVS、室间隔尺寸;LAD、与二尖瓣平面平行测量的最大左心房头尾尺寸;LVFW、左心室游离壁尺寸;LVID、左心室尺寸;LVOT、左心室流出道阻塞;RR、呼吸频率;s、收缩末期测量S 0 ,收缩期组织多普勒成像测量的二尖瓣侧环峰值速度;SF,左心室缩短分数。a 由连续波多普勒超声心动图测定,定义为 LVOT 收缩压梯度≥30 毫米汞柱。b 由于数据缺失或充盈波融合;显示绝对和相对频率以及平均值和标准偏差。治疗组间任何变量均无差异(所有 P > .05)。
Λ ≈ 60 Gyr。我们还表明,轨道周期和临界周期之比自然地从 Kretschmann 标量中得出,该标量是表征所有由德西特-史瓦西时空有效表示的双星系统的二次曲率不变量。双星系统在限制暗能量方面的适用性取决于其开普勒轨道周期 TK 与临界周期 T Λ 之比。TK ≈ T Λ 的系统最适合限制宇宙常数 Λ ,例如本星系群和室女座星系团。TK ≪ T Λ 的系统以吸引性引力为主(最适合研究修改后的引力校正)。TK ≫ T Λ 的系统以排斥性暗能量为主,因此可以用来从下方限制 Λ。我们利用后牛顿和暗能量修正的统一框架来计算有界和无界天体物理系统的进动,并从中推断出对 Λ 的限制。我们分析了脉冲星、太阳系、人马座 A* 周围的 S 型恒星、本星系群和室女座星系团,它们的轨道周期为几天到千兆年。我们的结果表明,当系统的轨道周期增加时,宇宙常数的上限会降低,这强调了 Λ 是双星运动中的关键周期。
现代人对全球环境问题的观念正在发生变化,未来的数据中心也有望采取具体措施来应对这一变化。与此同时,国际社会对环境问题的认识正在不断提高,未来建设的数据中心也需要采取具体措施。衡量数据中心环保程度的指标之一是PUE(能源使用效率),即设施总用电量与IT设备总用电量之比。十年前,PUE水平在2.0以上。
在260 nm和230 nm处的吸光度之比用作核酸纯度的次要度量。“纯”核酸的260/230值通常高于相应的260/280值。预期的260/230值通常在2.0–2.2的范围内。如果比率明显低于预期,则可能表明存在在230 nm处吸收的污染物。
所有这些都促使我们更加关注投资组合的价值。例如,在我们没有激进的盈利增长预测的情况下,我们投资组合的平均股息收益率为 Netflix 提供了很大一部分回报。自 2008 年以来,我们加拿大股票的市净率和总市值与销售额之比已经翻了一番(见图 3)。早在 2008 年 8 月,LBA 的加拿大股票交易价格为账面价值的 2.3 倍,而标准普尔/多伦多证券交易所的市净率为 2.4 倍,或为市场倍数的 95%。2020 年 5 月,我们的股票交易价格为账面价值的 0.6 倍,而市场为 1.6 倍,或为市场倍数的 40%。同样,我们股票的企业价值与销售额之比从 2.0 倍上升到 1.1 倍,而市场在同一时期从 2.2 倍上升到 2.6 倍,相对估值下降了 90% 至 42%。尽管这些倍数有所下降,但我们投资组合中的股票总回报率为 92%,而市场回报率为 59%。显然,相对下降不是因为我们公司的成长速度低于一般市场,而是因为它们的价格变得便宜得多。
为了降低数据写入的能量消耗,迫切需要开发新型存储材料。为了开发用于非挥发性存储器(如存储级存储器)的具有极低操作能量的新型相变材料 (PCM),我们通过数值模拟对 PCM 的物理特性进行了贝叶斯优化。在该数值模拟中,同时求解了电势和温度分布。研究发现,具有低热导率、低熔化温度以及低接触电阻与体积电阻之比的 PCM 会导致基于 PCM 的存储器应用的操作能量较低。最后,我们开发了 PCM 的设计策略。应通过降低操作能量 E 来开发新型 PCM,描述为 E = j (1 + C ) DT / D z ,其中 j 是 PCM 的热导率,DT 是熔化温度,C 是接触电阻与体积电阻之比,D z 是 PCM 的厚度。本研究结果阐明了热性能和电性能之间的关系,从而降低了以前研究中隐藏的操作能量。根据设计策略,与传统的 Ge-Sb-Te 化合物相比,相变存储器应用中的操作能量可以降低到 1/100 以下。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可证开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
比在空气中的要短。一般来说,由于应变速率较低和温度较高,疲劳寿命会降低。 环境修正系数 ( F en ) 定义为 LWR 环境 ( NW ) 中的疲劳寿命与空气中 ( NA ) 中的疲劳寿命之比,环境中的疲劳使用量 ( U en ) 为 F en 与空气中的疲劳使用量 ( U f ) 相乘所得。 包括环境在内的疲劳数据