2014 年第 37 届信息和通信技术、电子学和微电子学国际大会(MIPRO) 微电子学、电子学和电子技术纳米技术,从近代历史到(不)可预测的未来 - 特邀论文 1 J. Turkovic 基于低温(α)和高温(β)GeS 2 晶相的簇共存的光谱证据,位于玻璃状二硫化锗基质中 7 V. Mitsa、R. Holomb、G. Lovas、M. Veres、M. Ivanda、T. Kovach 银胶体纳米粒子的合成和表征及其在表面增强拉曼光谱中的应用 11 L. Mikac、M. Ivanda、M. Gotic、T. Mihelj 碲酸盐玻璃的拉曼光谱 15 H. Gebavi、D. Ristic、V. Djerek、L. Mikec、M. Ivanda、D.用于尖端光子学应用的米兰涂层球形微谐振器 18 D. Ristic、M. Mazzola、A. Chiappini、C. Armellini、A. Rasoloniaina、P. Féron、R. Ramponi、G.N.Conti、S. Pelli、G.C.Righini、G. Cibiel、M. Ivanda、M. Ferrari 使用 THz 时域光谱检查硅材料特性 22 B. Pejcinovic 微带宽度和退火时间对微尺度石墨烯 FET 特性的影响 27 M. Poljak、M. Wang、S. Zonja、V. Djerek、M. Ivanda、K.L.Wang, T. Suligoj 具有优化发射极和电介质的石墨烯基晶体管 33 S. Venica, F. Driussi, P. Palestri, L. Selmi 厚度低于 20 nm 的双栅极锗 MOSFET 中受声子限制的空穴迁移率 39 V. Ivanic, M. Poljak, T. Suligoj 20 nm 栅极体和 SOI FinFET 之间的 RF 性能比较 45 S. Krivec, H. Prgic, M. Poljak, T. Suligoj CMOS 二进制加法器老化的模拟研究 51 T. An, C. Hao, L. Alves de Barros Naviner 多故障下并发检查电路可靠性评估的分析方法 56 T. An, K. Liu, L. Alves de Barros Naviner CMOS 乘法器结构的合成使用多功能电路 60 C. Popa
VI. 参考文献 [1] DanWang, Maofeng & Wucheng,“180nm CMOS 技术中的新型低功耗全加器单元”,DOI:10.1109/ICIEA.2009.5138242,工业电子与应用,2009 年。ICIEA 2000。第四届 IEEE 会议,2009 年 6 月。 [2] Kamlesh Kukreti、Prashant Kumar 等人,“基于多米诺逻辑技术的全加器性能分析”,DOI:10.1109/ICICT50816.2021.9358544,印度哥印拜陀,2021 年。 [3] Umapathi.N、Murali Krishna、G. Lingala Srinivas。 (2021)“对进位选择加法器独特实现的综合调查”,IEEE 和 IAS 第四届两年一度的新兴工程技术国际会议,于 1 月 15 日至 16 日在印度新孟买举行。[4] Subodh Wairya、Rajendra Kumar 等人,“用于低压 VLSI 设计的高速混合 CMOS 全加器电路性能分析”,DOI:10.1155/2012/173079,2012 年 4 月。[5] N. Umapathi、G.Lavanya (2020)。使用 Dadda 算法和优化全加器设计和实现低功耗 16X16 乘法器。国际先进科学技术杂志,29(3),918-926。[6] Pankaj Kumar、Poonam Yadav 等人,“基于 GDI 的低功耗应用全加器电路设计和分析”,国际工程研究与应用杂志,ISSN:2248-9622,第 4 卷,第 3 期(第 1 版),2014 年 3 月。[7] NM Chore 和 RNMandavgane,“低功耗高速一位全加器调查”,2010 年 1 月。[8] Gangadhar Reddy Ramireddy 和 Yashpal Singh,“亚微米技术下拟议的全加器性能分析”,国际现代科学技术趋势杂志第 03 卷,第 03 期,2017 年 3 月 ISSN:2455-3778。 [9] Chandran Venkatesan、Sulthana M.Thabsera 等人,“使用 Cadence 45nm 技术的不同技术分析 1 位全加器”,DOI:10.1109/ICACCS.2019.8728449,2019 年 3 月,印度哥印拜陀。[10] K.Dhanunjaya、Dr.MN.Giri Prasad 和 Dr.K.Padmaraju,“使用 45nm Cmos 技术的低功耗全加器单元性能分析”,国际微电子工程杂志(IJME),第 3 卷。 1,No.1,2015 年。[11] Karthik Reddy.G,“Cadence Virtuoso 平台中 1 位全加器的低功耗面积设计”,国际 VLSI 设计与通信系统杂志 (VLSICS) 第 4 卷,第 4 期,2013 年 8 月,DOI:10.5121/vlsic.2013.4406 55。[12] Kavita Khare 和 Krishna Dayal Shukla,“使用 Cadence 工具设计 1 位低功耗全加器”,引用为:AIP 会议论文集 1324,373 (2010),2010 年 12 月 3 日。[13] Murali Krishna G. Karthick、Umapathi N.(2021)“低功耗高速应用的动态比较器设计”。引自:Kumar A.、Mozar S. (eds) ICCCE 2020。电气工程讲义,第 698 卷。Springer,新加坡。[14] Murali Anumothu、BRChaitanya Raju 等人“使用基于多路复用器的 GDI 逻辑设计和分析 45nm 技术中的 1 位全加器的性能”,第 3 卷(2016),第 3 期,2016 年 3 月。[15] Partha Bhattacharyya、Bijoy Kundu 等人。al“低功耗高速混合 1 位全加器电路的性能分析”,第 23 卷,第 10 期,DOI:10.1109/TVLSI.2014.2357057,2015 年 10 月。
3瓦济港科学技术大学,武汉,中国的癫痫发作检测处理器已提议使用机器学习来检测患者的癫痫发作,以提高或刺激目的[1-4]。现有设计可以实现高精度,当可用于培训的大量癫痫发作数据。然而,与收集非赛式数据的收集不同,癫痫发作数据的收集要求患者需要进行时间耗时且昂贵的住院治疗,这在实践中很难。为了解决这个问题,[5]提出了一个零射击癫痫发作检测处理器,在没有患者进行重新训练的情况下达到了相对较高的精度(此处的零照片意味着零癫痫发作数据[5])。取而代之的是,只需要从患者的2分钟的非Seizure数据来校准用在公共癫痫发作数据集中预先训练的神经网络(NN)提取的聚类特征。尽管这解决了上述问题,但该设计的准确性(敏感性为90.3%&特定的93.6%)仍然有限用于实际使用,并且能源消耗很大,用于可穿戴的EEG监测设备,例如其他使用NN的癫痫发作检测处理器,如图在这项工作中,我们提出了一个零射的癫痫发作检测处理器,不需要患者的癫痫发作数据以进行[5]中的癫痫发作,但准确性和能量效率更高。图33.1.1显示了所提出的癫痫发作检测处理器的整体体系结构。33.1.2。提取了四个手动特征,包括三个EEG光谱带功率和线长度。它具有两个主要特征:1)杂交驱动的自适应加工体系结构,其片上学习不需要患者的癫痫发作数据即可获得超低的能耗和高精度,以及2)一种基于学习的自适应渠道选择技术,以进一步降低能源消耗,同时保持高精度。It mainly consists of a multi-feature extraction engine (MFEE), a hybrid-feature-driven adaptive processing engine (HAPE), a reconfigurable on-chip learning engine (ROLE), a learning-based channel selection module (LCSM), a data buffer for storing the input data from multiple EEG channels, and a data interface for parameter loading including the NN instructions and weights.一些最新的癫痫发作检测处理器采用基于手动特征提取的分类,以较低的复杂性和更强大的患者性能,而其他人则使用基于端到端的NN基于NN的分类,以提高精确度,以较少的功能工程工作。在这项工作中,我们提出了基于片上学习和自适应处理的基于混合特征的癫痫发作检测处理,以利用两者的优势,如图NN特征提取由深度转换组成,并具有扩张的Cons和Pointwisce Conv。手动功能和NN功能首先通过两个完全连接(FC)层(即FC1_1和FC1_2)投影。33.1.2),然后融合为混合特征,以馈入FC2_2进行分类。对于基于片上学习的混合功能,不需要患者的癫痫发作数据。与[5]中一样,NN使用常用的公共数据集(CHB-MIT)进行预训练。对于片上学习,来自患者的1分钟的非Seizure数据和来自公共数据集的1分钟癫痫发作数据被混合为学习数据集。为了降低能量,仅重新训练了杂交分类层和投影层。图33.1.2显示了包含两个阶段的片上学习处理流。基于混合功能NN,我们提出了一个混合驱动的自适应处理体系结构。添加了另一个FC层(FC2_1)以对手动功能进行分类。最初,仅激活手动功能分类,而混合特征分类和NN特征提取被停用。如果Fc2_1的分类结果是非seizure,则分类终止。否则,NN特征提取和混合特征分类被激活以进行进一步的分类。这种显着的同时降低了能源消耗,同时保持高精度,因为与癫痫发作相比,非赛式事件通常是主要的。为了减少由于手动特征分类的分类误差而导致的准确性损失,在培训期间将实现偏差,以将输入分类为癫痫发作以进行进一步分类。图33.1.3用混合驱动的自适应处理流量显示了HAPE和MFEE的硬件体系结构。HAPE合并了16个用于NN计算的多精制MAC单位。在计算过程中,激活数据根据其值将激活数据动态分为4B或8B,对于4B数据,高4B乘法器被禁用以节能。MFEE将4个功能计算器通过16通道脑电图通过时间多路复用重复使用。在混合驱动的自适应处理控制器的控制下,NN计算是自适应的
esac3a ESAC3A ESAC3A AC3A 已批准 1/21/11 2005 IEEE 标准 - 更新 AC3A 在所有程序中 esac3c AC3C AC3C AC3C 已批准 4/22/20 exac4 EXAC4 EXAC4 AC4A 已批准 8/11/06 带可控整流器的旋转交流电 (Althyrex) (罕见) 与 IEEE AC4A 不同 - 没有 OEL/UEL 输入 esac4a ESAC4A ESAC4A AC4A 已批准 1/21/11 2005 IEEE 标准 - 更新 AC4A 在所有程序中 esac4c AC4C AC4C AC4C 已批准 4/22/20 esac5a ESAC5A ESAC5A AC5A 已批准 1/21/11 简化无刷励磁机 在所有程序中 esac5c AC5C AC5C 已批准 4/22/20 exac6a ESAC6A EXAC6A AC6A 从未批准 交流发电机,非控制整流器,超前滞后 与 IEEE AC6A 不同 - 没有 OEL/UEL 输入;速度乘法器,不是 PSS/E 的新模型(模型已经存在) esac6a ESAC6A ESAC6A AC6A 批准 1/21/11 2005 IEEE 标准 - 更新的 AC6A 在所有程序中 esac6c AC6C AC6C AC6C 批准 4/22/20 esac7b AC7B ESAC7B 和 AC7B AC7B 批准 1/21/11 2005 IEEE 标准 - 新 在所有程序中 esac7c AC7C AC7C AC7C 批准 4/22/20 exac8b ESAC8B EXAC8B ESAC8B 批准 8/11/06 带 PID 电压调节器的无刷励磁机 与 IEEE AC8B 不同 - 没有励磁机上限;增加了输入限制和速度乘数 esac8b AC8B ESAC8B_GE 和 AC8B AC8B 已批准 1/21/11 2005 IEEE 标准 - 更新了 AC8B 在所有程序中 esac8c AC8C AC8C AC8C 已批准 4/22/20 esac9c AC9C AC9C AC9C 已批准 4/22/20 esac10c AC10C AC10C 已批准 4/22/20 AC11C AC11C AC11C 已批准 4/22/20 exbbc BBSEX1 EXBBC 和 BBSEX1 已批准 8/11/06 静态带 ABB 调节器 在所有程序中 exdc1 IEEEX1 EXDC1 和 IEEEX1 DC1A 已批准 8/11/06 旋转直流 与 IEEE DC1A 不同 - 没有 UEL 输入;速度倍增器 esdc1a ESDC1A ESDC1A DC1A 已批准 1/21/11 2005 IEEE 标准 - 更新了 DC1A 在所有程序中 esdc1c DC1C DC1C DC1C 已批准 4/22/20 exdc2 EXDC2 EXDC2_GE 和 EXDC2_PTI 已批准 8/11/06 带有终端供电先导的旋转直流电、交替反馈 exdc2a EXDC2 EXDC2A 和 EXDC2_PTI DC2A 已批准 8/11/06 带有终端供电先导的旋转直流电 与 IEEE DC2A 不同 - 没有 UEL 输入;速度倍增器 esdc2a ESDC2A ESDC2A DC2A 已批准 2005 年 1 月 21 日 IEEE 标准 - 在所有程序中更新了 DC2A esdc2c DC2C DC2C DC2C 已批准 20 年 4 月 22 日 exdc4 IEEET4 EXDC4 和 IEEET4 DC3A 已批准 2006 年 8 月 11 日 旋转、非连续 - 模型间细微差别 如果 Kr = 0,应转换为 IEEEX4 (IEEE DC3A)。在 PSS/E -32 中添加了模型。 esdc3a DC3A ESDC3A 和 DC3A DC3A 已批准 1/21/11 旋转,非连续 在所有程序中 esdc4b DC4B ESDC4B DC4B 已批准 1/21/11 带 PID 的旋转直流 在所有程序中 esdc4c DC4C DC4C DC4C 已批准 4/22/20 exeli EXELI EXELI 已批准 8/11/06 静态 PI 变压器供电励磁系统 exst1 EXST1 EXST1_GE 和 EXST1_PTI ST1A 已批准 8/11/06 静态双超前/滞后 与 IEEE ST1A 不同 - 没有 OEL/UEL 输入;添加了 Xe Ifd 负载;RFB 在励磁电流限制器之前。esst1a ESST1A ESST1A 和 ESST1A_GE ST1A 已批准 1/21/11 在所有程序中 esst1c ST1C ST1C ST1C 已批准 4/22/20 exst2 EXST2 EXST2 已批准 8/11/06 SCPT - 添加了超前/滞后块(Tc、Tb) exst2a ESST2A EXST2A ST2A 已批准 8/11/06 包含超前/滞后块(Tc、Tb)以匹配 WECC FM 与 IEEE ST2A 不同 - 没有 UEL 输入;添加了超前/滞后。 esst2a ESST2A ESST2A ST2A 已批准 2005 年 1 月 21 日 IEEE 标准 - 更新的 ST2A esst2c ST2C ST2C ST2C 已批准 20 年 4 月 22 日 exst3 EXST3 EXST3 ST3 已批准 2006 年 8 月 11 日 exst3a ESST3A EXST3A ST3A 已批准 2006 年 8 月 11 日 用于 GE Generex 与 IEEE ST2A 不同 - 没有 UEL 输入;时间常数较少。esst3a ESST3A ESST3A ST3A 已批准 2005 年 1 月 21 日 IEEE 标准 - 更新的 ST3A esst3c ST3C ST3C 已批准 20 年 4 月 22 日
探路者构造手册。探路者构造。探路者构造指南。《构建手册》是一个探路者广告系列源书,于2018年11月14日发布。凡人迷恋通过金属和魔法复制生活,从他们的伟大劳动中,各种各样的结构。本书揭示了创建这些奇迹的秘诀,包括发条,魔像和机器人。在其页面中,您会发现: *有关如何构建构造的信息 *针对您的构造的新修改 *原型 *原型组装或打击构造 *新的魔法物品,这些项目有助于创建和破坏本书的创建和破坏,还包含多个新的构造,包括以上的新构造,包括发条的goblins,Gladiciator Robots,Gladiator Robots,Sand Golems,Sand Golems和功能强大的自动组件和功能强大的自动组件。可以通过构造永久咒语来制作永久的动画构造。但是,这些创造仍然可以被抗原剂消除或抑制。Craft Construct Feat创建了具有抵抗分配和抗原的永久物体。动画对象的CR取决于其大小和能力(请参阅动画对象)。动画对象的新能力包括: *增强关键(1 cp):将近战攻击的威胁范围增加1或威胁乘数增加1,但不能与自身或刺穿/斜线攻击相结合。*特殊范围(1 cp):一次近战攻击的距离+5英尺。其他+1 CP可以增加所有攻击的影响力。其他+1 CP允许更换所有近战攻击。*改进的攻击(1 CP):增加近战/范围攻击的伤害,就好像对象的大小类别更大,但需要单独购买近战和范围攻击。*穿孔攻击(1 CP):用×3乘数损坏的刺穿攻击代替了一种近战攻击。*远程攻击(2 cp):用远程攻击代替一个猛击攻击,造成相同的伤害并具有20英尺的范围。其他+2 CP允许更换所有攻击。*削减攻击(1 cp):用削减损害的攻击代替了一个猛击攻击,并具有19-20的威胁范围或×3乘法器。其他+1 CP允许更换所有近战攻击。* Trip(2 CP):获得其猛击攻击的特殊能力。构造通常具有: *智力得分 *平均智慧得分 *魅力为1 *较差至平均灵活性,尽管存在异常敏捷的构造 *中等或更大尺寸的新结构的高强度得分应贴在怪物创造规则附近,并使用“高攻击”列来造成伤害。请注意,构造缺乏宪法得分,储蓄投掷差。下表提供了各种构造的详细信息:计算制作构造成本的综合指南,包括动画对象和魔像。构造的基本成本是通过将其挑战等级(CR)和乘以500件(GP)来计算的。例如,CR 1/2对象的价格为250 gp。原材料通常占建筑基本价格的5%至10%。创建独特的构造需要仔细考虑。其他特殊能力增加了以下成本:第一个能力将+1/2 CR添加到总数中;第二个和后续功能每个能力添加+1 CR。特殊能力包括增加损伤性,类似怪物的统计数据,对魔术的免疫力以及出色的康复。具有多种特殊能力的构造的定价如下: *第一个特殊能力:包括基本成本 *第二特殊能力:+1/2 cr添加到总计 *第三和随后的特殊能力中:+1 CR每种构造,尤其是魔像,尤其是GOLEMS,尤其是必须全额支付的原始材料。工艺结构壮举的魔法供应成本是建筑的基本价格的一半,构造需要1天才能创建其每1,000 gp的基本价格。特殊能力的示例包括: *较高的损害值 *类似怪物的统计数据超过了为构造的cr *免疫力所推荐的统计数据 *通过单个咒语完全治愈的能力 *特殊攻击和质量,特别是有力的特殊能力,这是两个较小的能力。修改自己的构造需要工艺结构壮举,创建者必须满足与修改相关的任何其他制作要求或成本。该过程每1,000 GP的基本价格(至少1天)需要1天。基本修改改变了建筑的基本属性:装甲级,命中骰子和武器。这些变化可以增强自然装甲奖金,增加魔术装甲特性或调整命中骰子以影响后续能力。每个器官都被视为单独的升级,成本累计。复杂的生物构造升级合并trans变和坏死,以将活的器官注入魔像,并将其与栩栩如生的特性相融合。生物构造仅在魔像中起作用,并且容易受到关键命中的影响。####基本修改 *装甲修改:增强天然装甲或添加魔术装甲特性。*命中骰子修改:调整总体强度和力量,影响生命值,节省投掷和基本攻击。*修改武器:添加物理武器或增强具有神奇特性的现有武器。####复杂的生物结构升级 *要求:工艺构造功能 *成本:22,750 gp(施放咒语的最低水平×咒语×咒语水平×250 gp) *受到关键命中率的生物构建升级:关键的命中和破坏,当魔鬼与生物构造的造成造成关键的造成损害的魔力时,它会损害其构造和构造的构造,并造成了一个构建的构建和典范。损坏的升级停止功能,构建体失去了相关的能力。如果构建体具有多个生物构造升级,则只有一个受影响。心脏升级:此升级允许魔像从神奇的康复中获得半效率,并提供了一个命中奖金,就好像其宪法得分为12。但是,该构建体没有获得宪法得分。负能量法术会影响心脏,导致其在持续时间或保存之前停止功能。大脑升级:此升级使Golem能够获得技能和壮举,好像它的智能得分为10。魔法咒语或影响思维的效果会抑制大脑,从而导致构造失去了其技能和壮举的访问权限。如果咒语保存,大脑使用魔像的节省。构造装甲:这种修饰允许其创建者像盔甲一样佩戴构造。只要创造者佩戴它,构造就不会执行独立的动作。被摧毁时,佩戴者会失去好处,但会恢复障碍,直到卸下装甲为止。手工艺者的眼睛:这种升级使手工艺的晶体眼睛允许她使用刮擦或更大的尖锐咒语,从她的创作的角度看。成本包括创建一种特殊的结晶球神奇地粘合到眼睛上,作为咒语的重点。构造肢体:(文本在此之后继续)制作魔术武器和装甲:构造魔术修改动画对象的能力已通过构造探索,尺寸小或微小。通过此修改,您可以使用构造肢来创建自己的手臂的扩展。此肢体保留了原始结构的近战攻击,并允许您使用特殊攻击,就好像您是构造本身一样。但是,出于确定机会和其他触发动作的攻击,您被认为是攻击的人。构造肢体还提供了有限的战斗保护,与重钢盾牌相当。您精通此盾牌,并且您的能力保持完整。构造肢体的重量和交流算作重型钢盾的重量。符文雕刻的要求对符合符文构建的要求,您可以将符文插入他们的身体。被捕获的生物一直被困直到宝石被摧毁。当满足某些条件时,这些符文会触发特定的效果。您可以从各种符文中进行选择,每个符文都有其独特的属性和先决条件。这些符文的成本和要求因选择的符文而异。一些最常见和众所周知的符文包括:疼痛符文:受损害触发,符文会造成20英尺半径内生物的痛苦。他们必须在DC 17毅力中取得成功,或者遭受持续1分钟的处罚。监禁符文:当通过触摸或范围的触摸攻击法术触发时,符文将尺寸捕捉到施法者的身体和灵魂中,嵌入了构造体内的宝石中。可以将多个符文应用于单个构造中,每次满足指定条件时触发其各自的效果。在宝石监狱中,一个被困的实体容易受到关键命中的影响。如果攻击者得分命中率,则构造会受到损害,并且宝石碎裂,将被困的生物释放到相邻的空间中。必须在再次监禁功能之前更换破碎的宝石。修改后的结构获得了几种能力: *由近战攻击触发的符文会释放出电力,从而对附近生物造成电损害。*首次攻击构造时,触发了另一个符文,授予其为装甲级的盾牌加成3分钟。*第三个符文会产生大量的死灵能量,在附近的生物中引起恐慌或震动。破碎的藏匿修饰允许使用空心部分制成魔像的一部分。被攻击者击中时,这些部分破碎并释放其内容。示例包括: *造成酸损害并引起恶心的腐蚀性液体 *造成火灾损害的火灾 *造成冷损伤和纠缠生物的霜冻雾气 *闪电睫毛,从而造成电气损坏的电力从改装的构造的存储箱中爆发出来。爆炸中捕获的人必须进行DC 15反射节省或遭受3D8点电损坏。成功的保存将伤害减少了一半。修改要求:闪电;费用:1,200 GP