推荐采用市售商品化的DNA提取纯化试剂盒。如使用CTAB法提取DNA所需试剂如下: a) 乙二胺四乙酸二钠(Na 2 EDTA,C 10 H 14 N 2 O 8 Na 2 ·2H 2 O)。 b) 氢氧化钠(NaOH)。 c) EDTA 溶液:ρ(EDTA)=0.02 mol/L:称取5.8448 g EDTA 溶于适量超纯水中,NaOH 固体调节pH 至8.0,定容至1000 mL,121℃灭菌18 min,冷却后常温保存。 d) 三羟甲基氨基甲烷(Tris,C 4 H 11 NO 3 )。 e) 浓盐酸:ρ(HCl)=1.19 g/mL。 f) Tris-HCl 溶液:ρ(Tris-HCl)=0.1 mol/L:称取15.76 g Tris-HCl 溶于适量超纯水中,浓盐酸调pH 至8.0,定容至1000 mL,121℃灭菌18 min,冷却后常温保存。 g) 十六烷基三甲基溴化铵(CTAB)。 h) 氯化钠(NaCl)。 i) CTAB 提取液:称取4 g CTAB 和16.38 g NaCl,分别溶于适量超纯水中,加入0.02 mol/L EDTA 溶 液(5.3 c)8 mL 和0.1 mol/L Tris-HCl 溶液(5.3 f)20 mL,定容至200 mL,121℃灭菌18 min, 冷却后常温保存。 j) Tris 饱和酚(pH=8.0)。 k) 三氯甲烷(CHC l3 )。 l) 异戊醇(C 5 H1 2O )。 m) 酚氯仿:Tris 饱和酚、氯仿和异戊醇按25:24:1 体积比配制。 n) 乙酸铵(CH 3 COONH 4 )。 o) 乙酸铵溶液,ρ(CH3COONH4)=7.5 mol/L:称取5.78 g 乙酸铵溶于10 mL 超纯水中。 p) 乙酸钠(CH 3 COONa·3H 2 O)。 q) 乙酸钠溶液,ρ(CH 3 COONa)=3 mol/L:称取102.06 g 乙酸钠溶于适量超纯水中,冰醋酸调节pH 至5.2,定容至250 mL,121 ℃灭菌18 min; r) 无水乙醇(C 2 H 6 O)。 s) 冰乙酸(C 2 H 4 O 2 )。 t) 蛋白酶K:400 U/mL。 u) 超纯水:经121 ℃,0.1 MPa 灭菌30 min,无细菌无DNA 酶。
亲爱的编辑,作物基因组编辑通过实现精英品种的精确改善,比常规育种具有巨大的优势。在谷物中,大麦(Hordeum vulgare L.)在全球重要性中处于第四位,并且在麦芽和酿造中具有广泛的应用。在像东亚这样的地区,大麦谷物具有传统的烹饪用途,直接煮熟为蒸大麦,烤成茶,或发酵用于味o和酱油,例如味道和酱油。值得注意的是,最近的健康趋势扩大了对年轻大麦草作为功能健康食品的兴趣。由于其富含维生素,纤维和类黄酮的含量,大麦草被加工成绿色果汁(Havlíková等人。2014)。这种绿色粉末表现出在抗毒剂,低脂肪和抗糖尿病活动中的有效性(Yu等人。2003;吉泽等。 2004; Takano等。 2013)。 在日本,雨季经常在收获季节之前,这使得预求发对谷物产量的挑战。 为了打扮,精英品种培养了早期的标题特征。 但是,这些特征对年轻的大麦草产量产生负面影响。 具体来说,年轻峰值的出现降低了草的商业价值。 当前归因于全球变暖的当前气候变化已加速且不稳定的尖峰变速,降低了草产量。 繁殖AP的转变,重点是当代品种中的晚期性状,对于保持一致的草产量至关重要。2003;吉泽等。2004; Takano等。2013)。在日本,雨季经常在收获季节之前,这使得预求发对谷物产量的挑战。为了打扮,精英品种培养了早期的标题特征。但是,这些特征对年轻的大麦草产量产生负面影响。具体来说,年轻峰值的出现降低了草的商业价值。当前归因于全球变暖的当前气候变化已加速且不稳定的尖峰变速,降低了草产量。繁殖AP的转变,重点是当代品种中的晚期性状,对于保持一致的草产量至关重要。我们的vious作品引入了planta粒子轰击 - 核糖核蛋白
可植入的心脏斑块和可注射的水凝胶是心肌梗塞(MI)后心脏组织再生的最有希望的疗法之一。将电导率纳入这些斑块和水凝胶已被发现是改善心脏组织功能的有效方法。导电纳米材料,例如碳纳米管(CNT),氧化石墨烯(GO),金纳米棒(GNR)以及导电聚合物,例如聚苯胺(PANI),聚吡咯(PPY),聚(PPY),聚(3,4-乙二基二苯基二苯乙烯)pssyrene pssyrene sulfot(p.s),因为它们具有硫磺素(pd),因为它们是PD:半导体的电导性能易于处理,并且有可能恢复通过梗塞区域的电信号传播。许多研究已将这些材料用于具有电活动(例如心脏组织)的生物组织的再生。在这篇综述中,我们总结了有关使用电导材料进行心脏组织工程及其制造方法的最新研究。此外,我们重点介绍了开发电导性材料的最新进步,用于递送治疗剂,作为治疗心脏病和再生受损心脏组织的新兴方法之一。
在体育领域,大麻被世界反兴奋剂机构(WADA)禁止在2004年以来的所有运动中。少数关于体育锻炼和大麻的研究集中在主要化合物上,即δ9-四氢大麻酚。大麻二醇(CBD)是另一种著名的植物大麻素,这些植物大麻素是在大麻干燥或培养的制剂中。与δ9-四氢大麻酚不同,CBD是无毒性的,但表现出对医疗用途很有趣的药物性特性。CBD的全球监管状况很复杂,这种化合物在许多国家仍然是受控物质。有趣的是,自2018年以来,世界反兴奋剂机构从竞争中或退出竞争的违禁物质清单中删除了CBD。WADA最近的决定使运动员开门供CBD使用。在本意见文章中,我们希望揭示在临床前研究中发现的不同的CBD属性,可以在运动领域中进一步测试以确定其效用。临床前研究表明,CBD由于其抗炎性,镇痛,抗焦虑,抗焦虑,神经保护特性及其对睡眠效果周期的影响可能对运动员有用。不幸的是,在锻炼的背景下,CBD上几乎没有临床数据,这使得它在这种情况下的使用仍然过早。
本文介绍了一种多步骤、集成流动和批量工艺,将 4'-取代苯乙酮转化为一系列应用相关的炔烃(方案 1)。我们通过将该方法应用于四种市售起始材料来展示该方法的多功能性。此外,我们通过对选定的化合物进行放大反应来说明和验证该工艺的适应性。此外,我们评估了这种集成流动路线的原子经济性 (AE) [28] 和 E 因子 [29],以将它们与之前报道的基于批量的程序进行比较,并讨论未来改进的前景。选择集成流动技术既是出于对 MOST 前体的可扩展生产的需求(这是其最终应用的关键要求),也是因为它代表了一种比传统批量工艺更环保、更可持续的合成替代方案。 [30–32] 此外,由于传热效率更高,它不仅可以实现改善的传质和单流多步合成,还可以更安全地处理反应性和有毒的起始原料和/或中间体。[33,34]
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2023年1月4日。 https://doi.org/10.1101/2023.01.03.522596 doi:biorxiv Preprint
共晶工程正在吸引越来越多的兴趣,这是一种具有有趣属性的新材料的有前途的方式,并且正在进行的研究正在制定可靠的设计规则以进行合并。1 2 3 4组成分子的大小和形状(此处称为构造)5是控制晶格排列的重要因素,以及由固态堆积产生的紧密分子间相互作用的强度和方向性。6 7原则上,当所有构造构成具有明确定义的刚性分子时,相对容易预测可能的晶格包装。共结晶晶格预测变得更具挑战性。6 7 8在这种情况下,最简单的概念方法是假设所有柔性构造都采用了最低的能量构象。然而,这种范式忽略了高能构象中的柔性构造可能会导致更有利的固态填料,这是由于官能团的定位,因此可能会允许更有利的固态包装。换句话说,增加的有利分子间相互作用数量增加可以抵消当构造采用高能量分子构象时所产生的能量惩罚。6 9
这项研究旨在通过化学和感觉评估来表征Zelen(Vitis Vinifera L.)葡萄酒的芳香独特性,这是一种来自斯洛文尼亚西部的Vipava山谷的自多品种。通过HS-SPME-GC-MS分析了七十种芳香族化合物,包括品种硫醇,酯,C6-醇,挥发性苯酚,萜类化合物,萜类化合物和丙烯酸酯,在两个调查中,通过HS-SPME-GC-MS进行了比较,将Zelen Wines与Vipava Valley的其他四种种植者进行了比较。Zelen葡萄酒的嗅觉空间是通过将其芳香剖面与Pinela葡萄酒的芳香剖面在分类任务中进行比较,并通过HPLC分数获得的芳香族馏分的嗅探。Zelen葡萄酒的特征是干草药和辣味,例如百里香,迷迭香和罗勒,与Pinela Wines相比。Zelen葡萄酒的化学特征是由单烯烯的原始混合物(包括萜烯异构体,林烯,limonene,p-甲苯,萜酚,linalool,linalool和α-耐酚)的原始混合物所支配的。获得的4-乙烯基鸟醇和甲基水杨酸酯的浓度位于与报道的嗅觉阈值接近或更高的水平上,从而推断了这些化合物对Zelen葡萄酒的辛辣芳香族成分的潜在贡献。通过HPLC半生育分级溶解的Zelen葡萄酒的两种芳族馏分,并通过HS-SPME-GC-MS进行了进一步分析,并通过HS-SPME-GC-MS进行了浏览的存在,这些原始混合物的存在是水合碳单位烯的原始混合物,包括定量测量的化合物,以及其他β-Myrc-β-Myrc,例如β-Myrc,以及其他化合物,以及其他化合物。 E-β-乙烯,Z-β-乙二烯和两个2,4,6-二十二烯-2,6-二甲基异构体。半定量测量结果表明,这组新的单甲烯类也比Pinela,Malvasia Istriana,Chardonnay和Sauvignon Blanc葡萄酒更高。
03-0780-100G Lithium t-butoxide, 98+% 100g POR 1907-33-1 03-0780-25G Lithium t-butoxide, 98+% 25g POR 1907-33-1 03-0800-100G Lithium carbonate (99.999%-Li) PURATREM 100g POR 554-13-2 03-0800-25G碳酸锂(99.999%-Li)Puratrem 25G POR 554-13-2 03-0900-10G氯化锂水合锂(99.996%-LI)Puratrem 10G PORATREM 10G POR 16712-20-20-203-0900-50900-50G氯化液化液(99.996%-LIS-LITHIUM) 03-1000-25G锂环戊二烯,97%25G POR 16733-97-4 03-1000-5G环戊二烯锂,97%5G POR 16733-97-97-97-4 03-1150-1G,五甲基甲基甲基甲基甲基甲基甲基甲基二烯二烯,锂。98%1G POR 51905-34-1 03-1150-25G戊二甲基环甲酰胺锂,最小。98%25G POR 51905-34-1 03-1150-5G五甲基甲基环甲基二烯二烯,最小。98%5G POR 51905-34-1 03-1180-1G十二烷基硫酸锂,最小。98%1G POR 2044-56-6 03-1180-5G十二烷基硫酸锂,最小。98%5G POR 2044-56-6 03-1200-25G锂六氟乙酸锂,最小。97%25G POR 18424-17-4 03-1200-5G Hexafluoroantimonate,Min。97%5G POR 18424-17-4 03-1250-25G六氟酸锂(v)(v)(99.9+% - AS)25G POR 29935-35-1 03-1250-5G锂锂hexafluoroaroaroaroaroaroarchate(v)