进行热交换器,制冷系统或发电厂。不幸的是,通常的传热液(例如水和聚合物溶液)具有相对较低的热电导率。改善热萃取的一种方法是将传热液的流量与某些固体材料的高热电导率相结合,例如金属,金属氧化物或不同的碳材料:碳黑[6],碳纳米管[9],碳纳米含量[4] [4]或石墨烯Nananoplatelets [29]。然而,使用微米尺寸的固体材料的悬浮液会导致并发症,例如磨损,沉积和堵塞。石墨烯是六角形键合的碳原子的单原子薄片,由Novoselov等人优雅地获得并表征。[18],现在是研究最多的材料之一。The importance of graphene nanoplatelets and their benefits have been investigated, and the following advantages have been mentioned [ 22 ]: (1) it is relatively easy to synthesize, (2) it has long suspension time (leading to stable particle suspensions), (3) graphene nanoplatelets have large surface area/volume ratio, and (4) present low erosion, corrosion and clogging.这种悬浮液的动态粘度也是传热中实际应用的重要特性。大多数科学文献是关于水中的悬浮液,有时是表面活性剂/分散剂[1、2、10、12、19],证明了石墨烯纳米片浓度会导致粘度非线性增加。meh-Rali等。伊朗曼什等人。此外,几位作者研究了石墨烯纳米片的粘度[27],并显示出强大的温度降低。[16]制备的均质石墨烯纳米板 - 让使用高功率超声探针的悬浮液,以浓度为0.025、0.05、0.05、0.075和0.1质量%,对300、500、500、500和750 m 2 g-1的三个不同表面区域进行悬浮液。他们测量了在20至60°C的温度下,水平纳米片的粘度与剪切速率的粘度。观察到粘度随温度降低,但对浓度和特定表面积敏感。在水中,graphene纳米片悬浮液的样品也表现出剪切粉,可以解释如下。在较低的剪切速率下,随着纳米板旋转的液体旋转,它们逐渐使它们沿增加剪切的方向对齐,从而产生较小的耐药性,从而降低粘度。当剪切速率足够高时,达到了最大可能的剪切顺序,骨料分解为较小的尺寸,降低粘度[7,25]。[11]还研究了分散在蒸馏水中的石墨烯纳米片的粘度和热导电,并研究了三个有影响力的参数,包括浓度,温度和特定表面积。他们提出了相对粘度作为不同特定表面积,浓度和温度的函数的相关性。
摘要这项研究研究了集中在jambi领域的结构x管道中的倾斜,腐蚀和水合形成的流动保证问题,该量子由14个操作井和4个歧管组成。管道本身是用于运输碳氢化合物的最常见和安全的方法。理解流动保证对于确保流体从井转移到最终存储过程中至关重要。在这项研究中,使用瞬态仿真软件进行了模拟。模拟结果表明,14口经验丰富的井,有7条井已经在管道中沉积,平均腐蚀速率超过0.48 mm/yr。但是,该领域没有任何水合物形成。此后,对管道直径和抑制剂注入进行了敏感性分析,以评估其对裂缝和腐蚀的影响。仿真结果再次表明,随着管道直径的增加,流体在管道内移动的空间有更多的空间,从而导致液体保持量的分数减少,并增加了暴露于流体的管道面积。这将随后导致腐蚀速率增加。相反,随着管道直径的减小,可用的流体空间变得更加有限,从而导致液体固定分数增加,并且管道面积暴露于流体中以减少。这将导致腐蚀速率降低。管道直径的变化也不会影响打滑。抑制剂(单乙二醇)注射被证明是解决slugg和腐蚀的有效方法。抑制剂(单乙二醇)将结合流体流体中的水分子,从而减少管道中的水含量。水含量的降低将保持管道中流的稳定性,从而减轻裂缝。此外,水含量的降低可以降低腐蚀速率,在这种情况下,腐蚀速率低于0.48 mm/yr。这项研究有助于理解石油和天然气行业中流体动态和管道完整性,并为行业挑战提供实用的解决方案。
摘要融合沉积建模(FDM)是一种增材制造(AM),由于其在设计,有效使用材料和负担得起的成本方面,它引起了研究人员和行业的浓厚兴趣。在本文中,主要目的是研究FDM过程参数对挠曲性能的影响以及由聚对苯二甲酸乙二醇乙二醇(PETG)材料制成的最终部分的准确性,由于其强度和易用性,该材料广泛用于3D打印。采用了基于盒子– Behnken设计的响应表面方法(RSM)方法,其中包含三个关键过程参数:填充线距离,壁线计数和构建板温度。对数据的分析表明,所有三个参数都影响了印刷部分的固有特征,包括印刷部分的机械和尺寸特征。构建板温度被确定为最重要的参数,占印刷样品弯曲强度变化的53%,在样品的尺寸准确性方面偏离39.7%,如方差分析(ANOVA)所示。模型的预测值与相应的实验结果之间的比较表明,开发模型的适用性很高。在这项研究中观察到的最大百分比误差为3.4%,维度准确性为7.5%,建立了优化技术的功效。这些结果对于理解过程参数对材料响应的影响很有意义,并提供了一种系统的方法来开发具有改进的机械特性和几何维度的结构增强的PETG部分。
呼吸防护:如果通风不足,请穿呼吸防护。气体过滤器用于有机化合物的气/蒸气(沸点> 65°C,e。g。g。EN14387 A型)手动保护:合适的耐化学耐化学安全手套(EN ISO 374-1),直接接触延长(推荐:保护性Index 6,protective Index 6,相应的> 480分钟> 480分钟,> 480分钟的EN ISO 374-1)硝酸橡胶(0.4毫米),氯普伦橡胶(0.5毫米),丁基橡胶(0.7毫米)等由于类型多样性的多样性,应观察到制造商的使用指示。补充说明:规格基于测试,文献数据和手套制造商的信息,或者以类比从相似的物质中得出。由于许多条件(例如温度)必须考虑到,实践中化学保护手套的实际用法可能比通过测试确定的渗透时间短得多。眼睛保护:带有侧挡的安全眼镜(框架护目镜)(例如en 166)身体保护:必须根据活动和可能的暴露选择身体保护,例如围裙,保护靴子,化学保护套装(根据EN 14605在溅起或EN ISO 13982的情况下,如果在灰尘的情况下)。根据良好的工业卫生和安全实践,一般安全和卫生措施处理。除了规定的个人保护设备外,还需要穿着封闭的衣服。
乙二醇是汽车防冻剂和各种家庭和工业产品中的共同组成部分,无论是意外还是故意的,都会在摄入时构成重大健康风险。以严重的代谢性酸中毒,草酸钙晶体的形成和各种末端器官损伤,乙烯乙二醇毒性的特征是致命的,其潜在致命剂量估计为1500 mg/kg。母体化合物具有渗透活性,导致有害代谢物的产生,例如乙酸和草酸,这有助于代谢性酸中毒,肾毒性和心脏毒性。急性管理策略涉及支持性护理,将fomepizole作为竞争性酶抑制剂的管理以及通过透析消除肾脏。此外,乳酸间隙是乙二醇中毒中重要的诊断工具,突出了测量和预期乳酸水平之间的差异,这可能表明代谢性酸中毒和组织灌注不足。,我们提出了一例乙二醇中毒的病例,尽管启动治疗以及可能使用乳酸间隙来预测严重程度,但心脏骤停复杂。
胶质母细胞瘤 (GBM) 是脑部最常见、侵袭性最强的原发性肿瘤,确诊患者的平均预期寿命仅为 15 个月。因此,迫切需要更有效的疗法来治疗这种恶性肿瘤。包括癌症在内的多种疾病都以高水平活性氧 (ROS) 为特征,这可能是 GBM 的标志,可作为靶向或从中受益。因此,可以利用药物与 ROS 响应分子的共价连接,旨在在相关病理环境中选择性释放药物。在这项工作中,我们设计了一种新的 ROS 响应性前药,通过使用美法仑 (MPH) 与甲氧基聚乙二醇 (mPEG) 通过 ROS 可裂解基团硫缩酮 (TK) 共价偶联,展示了自组装成纳米级胶束的能力。对聚合物前药和适当的对照进行了全面的化学物理表征,并对不同的 GBM 细胞系和“健康”星形胶质细胞进行了体外细胞毒性试验,证实了该前药对健康细胞(即星形胶质细胞)没有任何细胞毒性。将这些结果与非 ROS 响应性对应物进行了比较,强调了 ROS 响应性前药对表达高水平 ROS 的 GBM 细胞的抗肿瘤活性优于非 ROS 响应性前药。另一方面,将这种 ROS 响应性前药与 X 射线照射联合治疗人类 GBM 细胞可增强抗肿瘤效果,这可能与放射疗法有关。因此,这些结果代表了合理设计创新和定制的 ROS 响应性前药的起点,用于 GBM 治疗和与放射疗法联合使用。
聚合物是各种生物材料,通常应用于抗癌和抗菌剂的组织工程和载体中。有多种化学,生物学,医学和工业应用,用于聚乙烯乙二醇(PEG),一种水溶性聚醚。由PEG组成的聚合药物输送系统由于免疫原性,生物降解性,活性药物靶向和可持续的药物释放特征而具有许多优势。此外,该聚合物已成功地用于为各个身体部位的组织工程制备三维(3D)支架。是增加生物相容性和全身循环时间的关键步骤。此外,刺激性反应性和两亲性药物结合物基于PEG作为自组装的配方,例如胶束增强了细胞内药物的释放。在这篇综述中,我们试图提出并讨论与PEG在抗菌药物携带者和组织工程中的新应用相关的最新进展和挑战。
使用透明质酸填充剂来矫正面部体积缺陷(包括下颌区域),可以显著改善面部平衡和外观。虽然这种手术具有不可否认的美容效果,但也存在很大的风险,例如轮廓不规则、血管阻塞和皮肤坏死。为了提高下颌区域体积增大的安全性和精确度,应仔细选择注射技术和产品。三十多年来,透明质酸 (HA) 一直被用作真皮填充剂,用于旨在面部年轻化和塑形的微创美容治疗。对于面部畸形、创伤、肿瘤切除后面部毁容或其他先天性或后天性疾病的患者,这些注射剂可以作为手术的替代方案或补充手术程序。
在工作中研究了2,2' - [乙烷-1,2dylbis(oxy)]二苯甲甲醛(N),硫代甲苯二硫酸盐配体(W)及其金属配合物在工作中。通过在DMF培养基中反应水杨醛和碳酸钠,在两个阶段完成合成反应,然后加入1,2-二溴乙烷当量。通过混合氢氮和CS 2,合成了W。配体(W)是通过将乙醇金属氯化物溶液添加到金属离子集合中产生的。之后,将配体N引入并溶解。在(0.5 m n:w)摩尔比以创建五种新型化合物的DMF中。使用物理化学技术(FT-IR,电子光谱分析,质量,¹-NMR和13 C-NMR光谱,元素分析,磁敏感性和摩尔浓度),验证合成化合物的孤立组成实体(电导率)。基于表征数据,形成了具有化学式[MLCL 2]的八面体化合物。当M = CO(LL),Ni(LL),Cu(LL),Zn(LL)和CD(LL)(LL)时,将标题成分(配体和复合物)的抗菌作用评估为抗氧化剂。结果表明,相对于L.
摘要:一系列新的杂环芳香族衍生物化合物是由Bis-甲基 - 二甲基 - 二甲基二甲基二甲基二苯甲酰基与不同氯化物部分的反应合成的4,4' - (二嗪-1,2-二苯基)二苯甲酰氯化物和氯霉素分别提供了含有原发胺基的衍生物化合物[A-A4]。这些衍生化合物[A-A4]使用冷热酯化以合成新的移植聚合物[B1-B4]反应。产品结构由FT-IR和1 H-NMR光谱符合。XRD-划分分别表现出化合物[B1和B3]分别为晶体和半晶。以及通过肿胀测试测试衍生物。肿胀的结果在72小时时显示出较高的范围50-150%。这些化合物[A-A4]和[B1-B4]已被测定针对大肠杆菌G+VE以及葡萄球菌的G-VE微生物的生物学活性。关键词:二 - 甲基 - 二苯甲酸(2-氨基苯甲酸),pipyridine-1-磺酰氯,吡啶-3-甲基磺酰基氯化物,氯吡啶甲基苯基甲基苯基,抗菌素。简介