洛斯加托斯镇公园和公共工程部宣布,湾区艺术家将有机会为 Outside the Box 项目提交设计作品。概述 Outside the Box 公共设施箱艺术项目旨在通过在街景中经常被涂鸦破坏者攻击的表面添加艺术作品来美化该地区。公共设施箱上的艺术作品是一种与移动观众沟通的形式,目的是展示一个安全、多样、公平和包容的城市环境。成功的提案将融合多样性、公平性和包容性,同时展示社区意识、可持续性和创造力,进一步提升我们城镇的文化。被接受的艺术作品将被转换成乙烯基包装并直接安装在公共设施箱上。选定艺术家的设计指南和规范
基于聚(乙烯基氟化物-co-trifluoroethelene)/钴铁液,P(VDF-TRFE)/COFE 2 O 4的喷雾印刷磁电(ME)复合材料的性能。表明,对于20 wt。%铁氧体含量,复合材料表现出纤维状孔结构,≈1.8GPA Young的模量,11.2 EMU.G -1,6.0 EMU.G -1磁性磁性和2050 OE的磁性磁性的饱和磁化。此外,证明了34个介电常数(在10 kHz时)和27 pc.n -1压电系数。在2450 OE的最佳磁场下,如此高的介电和压电响应解释了21.2 mV cm -1 oe -1的ME响应,这比通过bar涂层制备的相似复合材料的响应优于。高ME响应和简单可扩展的打印方法证明了这些材料对于具有成本效益和大规模传感器/执行器应用的适用性。
1 技术的详细描述 气溶胶密封剂可用于密封空气管道泄漏。这是通过对管道加压并注入喷雾密封剂来实现的。该技术可用于密封隐藏在墙壁、天花板和地板空腔中的小(直径最大为 ½ 英寸)和难以接近的管道泄漏(Ternes 和 Hwang2001)。气溶胶密封剂本身是一种无毒乙烯基聚合物(Kallett 等人,2000 年)。该技术是一种专有的管道密封方法,由美国政府和 Aeroseal 公司联合开发,后者拥有使用该技术的独家许可(Ternes 和 Hwang,2001 年)。具体而言,劳伦斯伯克利国家实验室在美国能源部 (DOE)、美国环境保护署等机构的资助下开发了气溶胶喷雾技术,而 Aeroseal 则开发了当前版本的设备和软件以将该技术应用于实践(Ternes 和 Hwang,2001 年)。
沿海地区碳钢腐蚀的成本很高,从而极大地影响了这些地方的经济。 div>涂料专门在这些条件下提供了良好的钢制保护,为此,新聚合物的持续发展是基本的。 div>在设计抗腐蚀涂料的设计中,已经使用了各种无机添加剂(其中一些具有潜在环境损害的金属)和有机物作为聚合物。 div>据报道,多多素氧化物,赤二酸的共聚物,半乙烯基 - 吡咯酮和聚二烯蛋白的共聚物是抗腐败涂料的成分。 div>这项工作的目的是获得一个电导性聚合物,该聚合物增强了炼金术涂层的保护作用。 div>关键词:抗腐蚀绘画,碳钢腐蚀,电导性聚合物,腐蚀抑制剂。 div>
聚(乙烯基氟化物),PVDF。PVDF显示了五个称为α,β,γ,δ和ε相的结晶多晶型物。其中,β相具有压电特性,但α相在热力学上更稳定。将添加剂掺入PVDF可以促进β相形成。在这项研究中,通过热压缩成型制造了具有不同SIC含量的PVDF-NANO SIC复合材料,并研究了SIC对PVDF的晶体结构,结晶度和压电性能的影响。通过SEM研究了复合样品的微观结构。制备的样品完全致密,密度超过理论密度的97%。通过FTIR分析确定β相的量,并根据DSC分析得出PVDF的结晶度。最后,通过压电酯测量样品的压电特性。结果表明,通过将SIC含量提高到1 wt%,样品的β相,结晶度和灵敏度的量增加,然后降低。
摘要:我们证明,新设计的含有聚合用乙烯基反应基团的氨基酸磷二酰胺树脂 (APdA) 可用于通过 3D 多光子光刻制造亚 100 纳米结构。我们使用原子力和单分子荧光显微镜定量分析了纳米结构的特征尺寸、杨氏模量和功能化。我们的结果表明,由缬氨酸或丙氨酸组成的聚合物主链赋予单体疏水性,将聚合物纳米结构在水环境中的膨胀限制在 8% 以内。尽管膨胀很小,但实验表明,在干燥和潮湿条件下,杨氏模量变化高达 10 倍。为了增强基于 APdA 的结构的多功能性,我们加入了生物素功能化并将其用于固定细胞外囊泡。因此,这些发现凸显了基于 APdA 的纳米光刻光刻胶在生物医学和纳米技术应用方面的潜力。
聚(乙烯基氯化物),由于在其上掺入增塑剂,PVC具有广泛的应用。增塑剂使PVC聚合物柔性,可延展且易于加工。本文介绍了增塑剂的一般概述,该概述涵盖了其定义,类型,样本和来源。基于石油的增塑剂在本质上是有毒的,可能对人类的健康有害。因此,由于塑料工业的毒性低,渗透性,增强的热和机械性能以及与PVC的高兼容性,因此已将生物塑性化剂引入了塑料工业。本文还列出了增塑剂的性能,其各种应用,以及将增塑剂应用于PVC的研究作品的简要摘要。关键词:增塑剂,邻苯二甲酸盐,渗滤液性聚合物,生物塑性剂的引入多年来,增塑剂在塑料工业中发挥了重要作用,因为它被用作聚合物(例如乙烯基氯化物)的添加剂。通常,未塑料的PVC具有有限的范围,例如管道,窗口轮廓和壁板。这是由于其坚硬而脆弱的性质是由Cl-Cl键的存在引起的。为了改善PVC的机械和热性能,将增塑剂引入聚合物中(Unar等,2010)。此外,增塑剂还为最终产物提供了足够的弹性,柔韧性和锻造性。增塑剂只是指在聚合物中添加到较低的玻璃温度和不折痕加工性,可加工性和延展性的低分子量化合物(Wei等,2019)。然而,由于环境和健康问题,塑料行业逐渐将其研究重点从传统的基于邻苯二甲酸酯的增塑剂转变为基于生物的增塑剂(Mekonnen等,2013)。此外,可以生产邻苯二甲酸酯的石油资源有限,导致许多研究用于使用生物质量。基于生物的增塑剂本质上是可再生的,并防止其浸出。此外,它的毒性和环境较小(Tong and Hai,2018; Lee等,2018)。一些研究人员已与PVC合成和应用生物塑性剂。,例如甘油酯,琥珀酸酯,等齿,脂肪酸,蓖麻油衍生物,植物油,乳酸和柠檬酸酯(Lavorgna等,
全稳态锂离子电池(LIB)吸引了潜在安全的存储系统。1-7此外,近年来,已经对3D打印技术进行了调整以使Libs的制造,从而允许方便地生产柔性设计,例如微型3D形状。原则上,使用简单的打印系统可以将这种微电池直接集成到包含各种电子设备的基板上。最近,已经提供了用于Lib的阴极和阳极的3D可打印墨水。8-13在此工作,Lewis等。 意识到,使用3D可打印电极制造的锂离子微生物具有正确调整的流变学和电化学特性。 8 Kohlmeyer等。 开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。 11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。 可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。 14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成8-13在此工作,Lewis等。意识到,使用3D可打印电极制造的锂离子微生物具有正确调整的流变学和电化学特性。8 Kohlmeyer等。 开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。 11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。 可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。 14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成8 Kohlmeyer等。开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成14-18 Cheng等。使用高温直接ink写作技术开发了3D打印的混合固态电解质。15电解质墨水由溶解在n-丙基-N-甲基吡咯烷
离子交换树脂是通过自由基聚合有机单体(如苯乙烯)在乳液滴中的反应制备而成的。由于离子交换树脂具有带电极性基团作为活性位点,因此需要通过二乙烯基苯等化学交联聚合物,以防止珠粒溶解。交联度是树脂珠粒选择性的关键参数,它提供了对功能基团所需的可及性。传统上,离子交换树脂是通过悬浮聚合制备的,这会产生较宽的珠粒尺寸分布。因此,由于交联不均匀,通常会获得较低的操作容量和较低的机械和渗透稳定性。因此,朗盛开发了一种独特的技术来生产单分散珠粒,该技术基于单分散液滴的封装。有趣的是,由于单分散液滴内的均匀聚合,这些树脂具有优异的机械和渗透稳定性以及出色的交换动力学。