预期用途 液体巯基乙酸盐培养基是一种用于无菌控制和培养苛刻厌氧和需氧微生物的液体培养基。 描述 液体巯基乙酸盐培养基是一种通用液体培养基,用于培养和分离苛刻厌氧和需氧微生物。它也可用作无菌测试的增菌培养基。该培养基符合美国药典 (USP)、欧洲药典 (EP) 和日本药典 (JP) 中统一方法的要求以及 ISO 7937 分离产气荚膜梭菌的要求。典型配方* (g/l) 酪蛋白酶解物 15.0 酵母提取物 5.0 葡萄糖 5.5 氯化钠 2.5 巯基乙酸钠 0.5 L-胱氨酸 0.5 刃天青 0.001 琼脂 0.75 最终 pH 值为 7.1 ± 0.2(25°C)
锂硫电池 (LSB) 是后 LIBs 技术最有前途的候选者之一。[10–12] 在 LSB 中,通过硫和锂之间的多电子反应可实现 1675 mAh g −1 的理论容量。放电过程中会出现两个不同的电压平台。在较高的电压平台(约 2.3 V)下,S 的最稳定的同素异形体 S 8 的环状结构被破坏,形成长链多硫化锂;一开始是 Li 2 S 8 ,然后进一步还原为 Li 2 S 6 和 Li 2 S 4 。在较低的电压平台(约 2.1 V),长链多硫化锂进一步还原为 Li 2 S 2 和 Li 2 S。[13,14] 除了理论容量高之外,地球上 S 的储量丰富、价格低廉以及环境友好等特性使得 LSB 比 LIB 更便宜。然而,LSB 的工业化进程中仍存在一些障碍。[15,16] 首先,S 和放电产物 Li 2 S 本质上都是绝缘的(≈ 5 × 10 − 30 S cm − 1)。电极材料的低电导率会影响电池的电化学性能,尤其是在高电流密度下。其次,充放电过程中体积变化大会导致安全性和稳定性问题。由于 S 和 Li 2 S 的密度差异,当 S 转移到 Li 2 S 时,体积变化将高达 75%。最后,臭名昭著的穿梭效应会进一步导致性能下降。充放电过程中形成的多硫化锂可溶于电解液。这些中间体在正极和负极之间穿梭,并通过公式(1)和(2)所示的化学反应或电化学反应与电极材料发生反应,导致锂负极的消耗和“死”硫的形成,最终导致库仑效率和稳定性降低。
嘉奖令如下:第 18 军警旅总队及其附属部队在 1967 年 9 月 26 日至 1968 年 10 月 31 日期间支援越南共和国军事行动中表现出色。作为越南共和国所有非战术宪兵组织的指挥和控制总部,支队的官兵在维持整个战区下属指挥方面表现出非凡的奉献精神、毅力和专业精神。他们不懈努力,加班加点,确保旅内所有部队在指定的阳光充足的地区保持高度安全。军事警察旅 (HEADQL\.RTERS A:\D 总部支队) 的成员表现出了卓越的远见卓识和组织才能,在提供路线侦察、路线护送和警卫方面尤为成功;在提供\·id
有关其他技术,销售和订单帮助,请联系我们的销售代表©2023。联合石化。用户只有在未改变和完成时,才能将本版本的文档转发,分发和/或影印本,包括其所有标题,页脚,免责声明和其他信息。您不得将此文档复制到网站。联合石化不能保证典型(或其他非规定)值。典型值仅表示在指定日期使用我们的测试方法在我们的实验室中测试属性时,人们期望的值。某些产品属性并不经常测量,因此典型值可能不会基于统计相关的测试数量。可以对代表性样本而不是实际产品进行分析。信息是该文档仅与任何其他产品或材料结合使用时,仅与命名产品或材料有关。我们将信息基于被认为是可靠日期可靠的数据,但我们没有代表,或以其他方式表示明确或隐含的保证,具有特定目的的适用性,适用性,适用性,准确性,可靠性,可靠性或完整性或所描述的产品,材料或过程。用户对所有使用材料或产品的使用以及其感兴趣领土上的任何过程都负责。我们对直接或间接遭受或与使用或依赖本文档中任何信息有关的任何损失,损害或伤害的责任明确承担责任。对侵犯专利的保证,没有任何对任何产品或过程的认可,我们明确否认任何相反的含义。
葡萄酒微生物群落建立了复杂的生态系统,调节香气化合物的形成,但只有少数研究寻求特定微生物与葡萄酒挥发性物质之间的相关性。本研究结合了代谢条形码和代谢组学,以识别与杜罗河标志性地区 3 个著名品种的葡萄酒挥发性特征相关的真菌和细菌微生物生态位。在整个自然发酵过程中,鉴定了三个主要的微生物生态位,并且 Hanseniaspora - Saccharomyces 的演替时间取决于品种。最大的生态位包括 Hansenias pora、Aureobasidium、Alternaria、Rhodotorula、Sporobolomyces、Massilia、Bacillus、Staphylococcus 和 Cutibacterium,它们与 7 种代谢物呈正相关,即乙偶姻、乙酸异戊酯、丙酸乙酯、c-3-己烯醇、苯乙醚和 4-乙基苯酚。发酵酵母S. cerevisiae、Torulaspora delbrueckii和Meyerozyma caribbica与γ-丁内酯、t-威士忌内酯、异戊醇、癸酸乙酯、异丁酸乙酯、琥珀酸二乙酯、异戊酸、4-乙基愈创木酚和4-丙基愈创木酚呈强相关性。 Lachancea quebecensis 与几种致病真菌(青霉菌、白粉病菌、核盘菌、曲霉菌、Mycosphaerella tassiana)和细菌(假单胞菌属、酸拟杆菌、泛菌、Steno trophomonas 和 Enhydrobacter)聚类,与各种单萜醇和降异戊二烯类化合物(包括芳樟醇和 β-紫罗兰酮)呈正相关,此外还与苯甲醇、二乙酰、乙酸异丁酯、乙基香草酸酯和甲基香草酸酯呈正相关。代谢物-微生物群相关性表明品种特异性可能是区域芳香特征的基础。
摘要:最近,人们对使用各种“催化剂”的兴趣日益浓厚,以进一步丰富逆硫化反应的基质范围。虽然关于这些催化剂的作用机理已经有了若干提案,但是这些混合物中硫的形态仍然难以捉摸。作为了解这些催化剂何时以及是否适用的关键要素,我们试图通过尝试表征硫的形态来阐明二硫代氨基甲酸盐物质在逆硫化反应中的作用。无论是否含有金属二硫代氨基甲酸盐、二乙基二硫代氨基甲酸钾 (K-DTC),含有不同官能团与硫的各种基质的反应效率都表明形成了快速波动的硫形态,最重要的是,存在阴离子硫。最后,根据我们的研究结果,提出了一些关于使用二硫代氨基甲酸盐催化剂的最佳实践的建议。
GenoScreen 拥有基于新一代测序 (NGS) 的试剂盒,可同时识别分枝杆菌种类、进行基因分型并预测结核分枝杆菌复合群 (MTBC) 菌株的耐药性;该试剂盒 (Deeplex® Myc-TB) 可直接用于临床样本 (1) 。该检测依赖于单个 24 重扩增子混合物的深度测序,针对与一线和二线抗结核药物(利福平、异烟肼、吡嗪酰胺、乙胺丁醇、氟喹诺酮类、阿米卡星、卡那霉素、卷曲霉素、链霉素、乙硫异烟胺、贝达喹啉、氯法齐明和利奈唑胺)耐药性相关的 18 个主要 MTBC 基因区域。 hsp65 基因是分枝杆菌种属识别的靶标,而 spoligotyping 靶标(CRISPR/直接重复 [DR] 基因座)和耐药相关靶标中的系统发育单核苷酸多态性 (SNP) 用于 MTBC 菌株基因分型。
高度集成的可拉伸电子产品的发展需要开发可扩展的(亚)微米导体图案。共晶镓铟 (EGaIn) 是一种适用于可拉伸电子产品的导体,因为其液态金属特性使其在变形时具有高电导率。然而,它的高表面能使其以亚微米分辨率进行图案化具有挑战性。在此,我们通过首次报道 EGaIn 的电沉积克服了这一限制。我们使用一种非水基乙腈电解质,该电解质具有高电化学稳定性和化学正交性。电沉积材料可产生低电阻线,在(重复)拉伸至 100% 应变时仍保持稳定。由于电沉积受益于用于图案化基底金属的成熟纳米制造方法的分辨率,因此提出的“自下而上”方法通过在纳米压印预图案化的金种子层上进行电镀,在弹性体基板上实现了 300 nm 半间距的 EGaIn 规则线的创纪录高密度集成。此外,通过填充高纵横比通孔,实现了垂直集成。该功能通过制造全向可拉伸的 3D 电子电路概念化,并展示了用于制造微芯片互连的稳定镶嵌工艺的软电子模拟。总体而言,这项工作提出了一种简单的方法来解决高度集成 (3D) 可拉伸电子产品中的金属化挑战。
