高度集成的可拉伸电子产品的发展需要开发可扩展的(亚)微米导体图案。共晶镓铟 (EGaIn) 是一种适用于可拉伸电子产品的导体,因为其液态金属特性使其在变形时具有高电导率。然而,它的高表面能使其以亚微米分辨率进行图案化具有挑战性。在此,我们通过首次报道 EGaIn 的电沉积克服了这一限制。我们使用一种非水基乙腈电解质,该电解质具有高电化学稳定性和化学正交性。电沉积材料可产生低电阻线,在(重复)拉伸至 100% 应变时仍保持稳定。由于电沉积受益于用于图案化基底金属的成熟纳米制造方法的分辨率,因此提出的“自下而上”方法通过在纳米压印预图案化的金种子层上进行电镀,在弹性体基板上实现了 300 nm 半间距的 EGaIn 规则线的创纪录高密度集成。此外,通过填充高纵横比通孔,实现了垂直集成。该功能通过制造全向可拉伸的 3D 电子电路概念化,并展示了用于制造微芯片互连的稳定镶嵌工艺的软电子模拟。总体而言,这项工作提出了一种简单的方法来解决高度集成 (3D) 可拉伸电子产品中的金属化挑战。
理解和消除电解质溶液的降解可以说是高能密度锂 - 空气电池发展的主要挑战。使用乙腈的使用提供了与当前最新的Glyme醚相当的循环稳定性,尽管已经对溶剂降解进行了广泛的研究,但尚未提出乙腈降解的机制。通过应用原位压力测量和异位表征来监测锂 - 空气电池中乙腈的降解,揭示了细胞内H 2 O浓度与理想化的电子/氧气比之间的相关性。在细胞和模型条件下,循环电解质溶液的表征将乙酰酰胺鉴定为主要降解产物。提出了一种新的退化途径,该途径合理化了乙酰胺的形成,识别H 2 O在降解过程中的作用,并确认氢过氧化物作为锂 - 空气细胞中关键的拮抗物种。这些研究强调了在探索锂 - 空气细胞化学时考虑大气气体的影响的重要性,并建议进一步探索氢过氧化物物种对锂 - 空气细胞降解的影响,可能会导致鉴定出更多效率的电解质溶剂。
摘要人类呼吸的分析是一个非常活跃的研究领域,这是由在护理点上快速,容易且无创的工具进行医学诊断的愿景的驱动。毫米波频谱(MMWGS)是一种适合此应用的新型技术,因为它具有高灵敏度,特异性和选择性。最重要的是,它提供了适用于医生办公室或医院的紧凑型低成本系统的视角。在这项工作中,我们证明了使用MMWGS在医疗环境中获得的呼吸样品分析,并评估该方法的有效性,可靠性以及局限性和观点。为此,我们研究了来自慢性阻塞性肺病患者的28个重复样品,并将结果与气相色谱 - 质谱法(GC-MS)进行了比较。使用无校准拟合模型进行了数据的量化,该模型精确地描述了数据并提供了绝对数量。对于乙醇,丙酮和乙腈,结果与GC-MS测量非常吻合,并且与GC-MS一样可靠。重复样本偏离平均值仅6%至18%。MMWG的检测极限在很大程度上取决于分子物种。 例如,通过MMWGS系统可以将乙腈追溯到1.8×10 - 12 mol,这与GC-MS系统相当。 我们观察到甲醛和乙醛之间以及乙腈和乙醛之间的丰富性相关性,这证明了MMWGS在呼吸研究中的潜力。MMWG的检测极限在很大程度上取决于分子物种。例如,通过MMWGS系统可以将乙腈追溯到1.8×10 - 12 mol,这与GC-MS系统相当。我们观察到甲醛和乙醛之间以及乙腈和乙醛之间的丰富性相关性,这证明了MMWGS在呼吸研究中的潜力。
(1)借助超声波分散一定数量的凝胶,其中含有0.2 g布洛芬在50 mL流动相位中,用流动相位和过滤器稀释至100 mL(Whatman GF/C滤波器是合适的)。(2)用流动相位稀释1量溶液(1)至200卷。(3)将20 mg布洛芬bpcr溶解在2 ml乙腈R1中,在乙腈R1中加入1毫升的0.006%w/v溶液BPCR,然后用流动相位A稀释至10 ml。(4)0.0006%w/v的4'-异丁基乙烯酮BPCR(杂质E)(5)将布洛芬小瓶的含量溶解在1 ml乙腈R1中,并用流动相位稀释至5 mL。(6)在工业甲基化精神中布洛芬BPCR的2%w/v,允许站立1小时。用流动阶段A将1体积稀释至10卷(产生杂质1)。(7)用流动相位稀释1量溶液(2)至5卷。
(EDLC),其中流行的机制需要在高表面积材料和液体电解质之间的界面处进行非法拉第电荷存储。这些储能装置由于其高功率密度(10 kW kg −1 )、快速响应时间(1 s)、循环寿命(10 5 次循环)和安全性而引人注目。[1] 纳米多孔碳材料通常用于 EDLC。它们的多孔结构充当任何介质的批量缓冲库,从而减少离子对孔内表面的传输阻力。[2] 增加的孔隙可及性可容纳更多阳离子来填充电极的双层,从而产生 200 F g −1 数量级的比电容,就像活性炭的情况一样。 [3] 后者在这些储能装置中被广泛使用,因为它价格低廉,即碳化过程源自木材、煤和坚果壳,与其他多孔材料(如模板碳和碳化物衍生碳)相比,更容易制备。 它的比表面积约为 2000 m 2 g − 1 ,可为标准电池电极提供 ≈ 30 mAh g − 1 V − 1,而标准电池电极为 150 mAh g − 1 V − 1。[4,5]
摘要:2D材料在许多领域都显示出令人兴奋的特性,但是应用程序的开发受到低收益,高处理时间和当前去角质方法质量受损的障碍。在这项工作中,我们使用了MOS 2的出色MW吸收特性来诱导快速加热,从而产生吸附的,低沸点溶剂的近乎稳定性蒸发。突然的蒸发产生了内部压力,可以以高效率分离MOS 2层,并且通过分散溶剂的作用将其保持分离。我们的快速方法(90 s)给出了高度的高产(47%,在0.2 mg/ml时为47%,在1 mg/ml时为35%)高度脱落的材料(4层以下90%),大面积(高达几μm2)和优质的质量(未检测到显着的MOO 3)。关键字:钼二硫化物,过渡金属二盐元素(TMDC),微波驱动的去角质,大面积超薄片,高横向尺寸,高产量t
常见的移动阶段LC/UV流动阶段A:100 mm TEAA流动阶段B:100 mm TEAA在水/乙腈中(75:25 v/v)LC/MS流动期HFIP:六氟异丙醇
图1:培训数据和主动学习工作流程:a)水溶液中Mg 2+的训练子集,b)乙腈中PD 2+的训练子集(MECN),c)用于训练机器学习电位(MLP)的主动学习工作流程的方案。