摘要目的:为了同时确定散装和药物剂型的达帕格列嗪和Linagliptin,创建并随后验证了一种更容易,更实惠的RP-HPLC方法。方法:使用柱热科学同步C8,5μm粒径,昏暗。(mm)250x4.6 i.D标准化色谱条件。使用波长为230 nm的紫外检测器检测分析物。磷酸盐缓冲液和乙腈在30:70 v/v比的流动阶段使用。结果:Dapagliflozin和Linagliptin的保留时间分别为3.3和2.3分钟。dapagliflozin校准曲线在5–25μg/ml的浓度范围内显示线性相关系数为0.999,而Linagliptin的浓度范围为2-10μg/mL。已经确定,这种方法是快速,健壮,线性,灵敏,准确,精确和特定的。将各种降解应力条件应用于Dapagliflozin和Linagliptin。结论:随着保留时间的明显不同,两种API(活性药物成分)与纯标准药物(Dapagliflozin和Linagliptin)明显区分开。当前的药物方法已经开发并成功地用于确定合并配方和常规质量控制分析中的达帕列酰辛和利格列汀的水平,具有良好的准确性和敏感性。该方法已根据ICH指南对统计验证。关键字:Dapagliflozin,Linagliptin,反相HPLC,验证,强制降解研究,色谱条件。收到:12/09/2024接受:09/10/2024
摘要:电子封装领域迫切需要具有树脂基体的高性能复合材料,因为它们具有低介电常数、出色的耐高温性、优异的耐腐蚀性、重量轻和易于成型等特点。在本文中,为了改变邻苯二甲腈的介电性能,制备了空心玻璃微球 (HGM) 填充的氟化邻苯二甲腈 (PBDP) 复合材料,其填料含量范围为 0 至 35.0 vol.%。扫描电子显微镜 (SEM) 观察表明改性 HGM 颗粒均匀分散在基质中。PBDP/27.5HGM-NH 2 复合材料在 12 GHz 时表现出 1.85 的低介电常数。含有硅烷化 HGM 填料的复合材料的 5% 热重温度 (T5) (481-486 ◦ C) 高于最低封装材料要求 (450 ◦ C)。此外,PBDP/HGM-NH 2 复合材料的耐热指数 (T HRI) 高达 268 ◦ C。PBDP/HGM-NH 2 复合材料的储能模量在 400 ◦ C 时显著增加至 1283 MPa,与 PBDP 邻苯二甲腈树脂 (857 MPa) 相比增加了 50%。本复合材料的优异介电性能和热性能可为电子封装和能源系统热管理的全面应用铺平道路。
推荐采用市售商品化的DNA提取纯化试剂盒。如使用CTAB法提取DNA所需试剂如下: a) 乙二胺四乙酸二钠(Na 2 EDTA,C 10 H 14 N 2 O 8 Na 2 ·2H 2 O)。 b) 氢氧化钠(NaOH)。 c) EDTA 溶液:ρ(EDTA)=0.02 mol/L:称取5.8448 g EDTA 溶于适量超纯水中,NaOH 固体调节pH 至8.0,定容至1000 mL,121℃灭菌18 min,冷却后常温保存。 d) 三羟甲基氨基甲烷(Tris,C 4 H 11 NO 3 )。 e) 浓盐酸:ρ(HCl)=1.19 g/mL。 f) Tris-HCl 溶液:ρ(Tris-HCl)=0.1 mol/L:称取15.76 g Tris-HCl 溶于适量超纯水中,浓盐酸调pH 至8.0,定容至1000 mL,121℃灭菌18 min,冷却后常温保存。 g) 十六烷基三甲基溴化铵(CTAB)。 h) 氯化钠(NaCl)。 i) CTAB 提取液:称取4 g CTAB 和16.38 g NaCl,分别溶于适量超纯水中,加入0.02 mol/L EDTA 溶 液(5.3 c)8 mL 和0.1 mol/L Tris-HCl 溶液(5.3 f)20 mL,定容至200 mL,121℃灭菌18 min, 冷却后常温保存。 j) Tris 饱和酚(pH=8.0)。 k) 三氯甲烷(CHC l3 )。 l) 异戊醇(C 5 H1 2O )。 m) 酚氯仿:Tris 饱和酚、氯仿和异戊醇按25:24:1 体积比配制。 n) 乙酸铵(CH 3 COONH 4 )。 o) 乙酸铵溶液,ρ(CH3COONH4)=7.5 mol/L:称取5.78 g 乙酸铵溶于10 mL 超纯水中。 p) 乙酸钠(CH 3 COONa·3H 2 O)。 q) 乙酸钠溶液,ρ(CH 3 COONa)=3 mol/L:称取102.06 g 乙酸钠溶于适量超纯水中,冰醋酸调节pH 至5.2,定容至250 mL,121 ℃灭菌18 min; r) 无水乙醇(C 2 H 6 O)。 s) 冰乙酸(C 2 H 4 O 2 )。 t) 蛋白酶K:400 U/mL。 u) 超纯水:经121 ℃,0.1 MPa 灭菌30 min,无细菌无DNA 酶。
铜绿假单胞菌中的耐药性已通过多种机制介导,它们中排出泵介导的耐药性是耐药性最重要的机制之一。MEXAB-OPRM外排泵,能够识别和排出细菌细胞中各种结构无关的化合物,赋予对铜绿假单胞菌中广泛的抗生素的抗性。本研究的目的是筛选在印度传统医学中使用的药物,以发现一些能够抑制铜绿假单胞菌中的Mexab-Oprm泵的有效化合物,并研究具有抗抗性抗生素的特征性外排泵抑制剂的协同作用(MDR)抗生素(MDR)抗生素(MDR)菌株。在本研究中使用了100个临床分离株,四个敲除和1个MTCC-741标准菌株。所有100个临床分离株均已处理用于抗生素易感性测定法和ETBR琼脂卡特轮测定法以测定MDR表型。总共筛选了40种植物,以存在具有外排泵抑制活性的化合物。用三种不同的抗生素进一步探索了表现出EPI活性的植物的协同作用。十种植物提取物已显示出相当大的EPI活性,并且在10个活性提取物中,只有一种末期佳肴果实的甲醇提取物显示出与A组(环丙沙星,四环素和氯霉素)的协同活性。T. chebula果实提取物的分馏和纯化提供了乙酸乙酯,该乙酸酯与A组抗生素以及显着的EPI活性一起显示了协同活性。本研究的结果得出的结论是,乙酸酯是铜绿假单胞菌中过度表达Mexab-Oprm外排泵的有效EPI,可以与耐药组A抗生素一起使用,以抗多药抗性P. eruginosa。
大多数 OEM 使用 Neoprene ®(聚氯丁二烯)、HSN(高饱和腈)或 BUNA N(腈)密封件,REFLO A 流体与这些类型的材料完全兼容。但是,当压缩机从一种油配方或类型转换为另一种油配方或类型时,始终存在密封膨胀或收缩的风险。与环烷油或源自芳香族化学品(如烷基苯)的流体不同,REFLO A 流体几乎不会引起密封膨胀,因此不应认为与这些流体的补充兼容。虽然拧紧法兰有时可以纠正轻微泄漏,但我们建议在油转换期间应改装新的密封件。遵循 OEM 对加氢石蜡油的密封建议。
1婴儿耶稣工程学院航空工程系助理教授,印度泰米尔纳德邦Thoothukudi 628 851。2印度泰米尔纳德邦Tiruchengode 637 215机械工程学系助理教授。3印度泰米尔纳德邦索勒姆技术学院土木工程学院土木工程系助理教授。4,5印度泰米尔纳德邦的南达技术学院机械工程学系助理教授。6卡尔帕加姆高等教育学院电气和电子工程系助理教授,印度泰米尔纳德邦的哥印拜陀641 021。 7尼赫鲁理工学院航空工程系助理教授,哥印拜陀641 105,印度泰米尔纳德邦。6卡尔帕加姆高等教育学院电气和电子工程系助理教授,印度泰米尔纳德邦的哥印拜陀641 021。7尼赫鲁理工学院航空工程系助理教授,哥印拜陀641 105,印度泰米尔纳德邦。
癫痫是神经内科门诊常见的神经系统疾病。左乙拉西坦是治疗癫痫的常用抗癫痫药物之一,具有良好的疗效和耐受性。它经肾脏排泄,不依赖于细胞色素 p450。据报道,它有嗜睡、头痛、头晕、抑郁和焦虑等不良反应。此外,据报道,左乙拉西坦可引起急性肾损伤 (AKI) 和肾功能紊乱,这可能与其排泄方式有关,并且可能产生肾毒性,尤其是高负荷剂量时。我们报告的是一名患有癫痫的年轻女性患者因癫痫持续状态入院,开始服用负荷剂量 3 克左乙拉西坦,然后每天两次服用 1 克维持剂量,癫痫发作得到控制,但她出现了急性肾损伤,停用左乙拉西坦并在未进行肾透析的情况下进行医疗管理后病情有所改善,并出院回家,情况稳定。医生和医疗保健提供者应该了解这种罕见的不良反应和可用的管理方案,以便更好地护理患者并取得更好的结果。
沉积 (RPCVD) 系统以尽量减少表面损伤。起始表面是二氢化物和一氢化物终止的组合。ALE 实验周期包括用等离子体中的氦离子轰击基底 1-3 分钟以使其解吸,然后在无等离子体激发的情况下,在一定分压范围(1&- 7 Torr 至 1.67 mTorr)、温度范围(250 0 C-400 0 C)和时间范围(20 秒至 3 分钟)内用乙硅烷对表面进行剂量控制,以自限制方式将 Si2H6 吸附在轰击产生的裸露表面 Si 原子上,形成硅基 (SiH3) 物种,从而形成氢终止表面。在 3 分钟的轰击周期内,获得的最大生长量为每周期 0.44 个单层。随着轰击周期时间的减少,每周期的生长量减少,表明氢去除的百分比随着轰击时间的增加而减少。
潜在爆炸性和爆炸性化合物最明显的危害来自可能因飞散的碎片(金属、玻璃、陶瓷等)造成的身体伤害,以及因爆炸伴随或随后发生的火灾造成的烧伤。其中一些化合物还可能导致急性和慢性健康影响。用户必须熟悉他们正在使用的化合物的具体危害和毒性,这些可以在化学品的安全数据表 (SDS) 中找到。SDS 可通过耶鲁大学 EHS 网页 (ehs.yale.edu) 上的安全数据表链接获取。个人防护设备 (PPE) 大学的个人防护设备政策可在 EHS 网站 (ehs.yale.edu) 上找到处理这些化合物时必须佩戴护目镜和面罩。处理 PEC 和爆炸性化合物时必须佩戴手部防护手套。在实验室环境中处理固体或皮肤不太可能与溶液接触时,检查型丁腈手套(厚度至少为 4mil)通常足以处理这些化合物。但是,如果可能与皮肤接触溶液或使用量较大,则应在检查型丁腈手套上戴上实用级手套。在许多情况下,实用级丁腈手套或氯丁橡胶手套是合适的,但请参考化学品的 SDS、手套制造商的选择指南或联系 EHS 进行验证。皮肤和身体防护 长裤或覆盖身体的衣服
(2024 年 6 月 22 日收到;2024 年 10 月 27 日修订;2024 年 11 月 6 日接受)摘要。醌具有高氧化还原电位,使其适用于有机氧化还原液流电池。它们在充电过程中的氧化和放电涉及两个可逆的电子转移反应。本研究利用密度泛函理论 (DFT) 与 B3LYP 函数和 6-31G(d) 基组来计算苯醌 (BQ) 的第一和第二还原电位。通过添加电子给体取代基 (-NHCH 3 、-NH 2 、-OCH 3 、-NHCOCH 3 、-OCOCH 3 ) 生成各种 BQ 衍生物。通用溶剂化模型 (SMD) 评估了溶剂效应,而锂盐、溶剂化自由能和 HOMO-LUMO 能量影响还原电位。 -OCOCH₃ 取代的 BQ 显示出最高的第一和第二氧化还原电位,分别为 2.81 V 和 2.27 V。添加三氟化硼 (BF 3 ) 盐可将这些电位升高到 3.99 V 和 3.84 V。在三种溶剂中检查了 BQ 及其衍生物的电化学行为:四氯化碳 (CCl₄)、乙腈 (ACN) 和水 (H₂O)。这些溶剂中的平均还原电位遵循 CCl₄ < ACN < H₂O 的趋势,其中水由于其氢键和极性而最有效。这些发现强调了溶剂特性对电化学过程的重大影响。关键词:苯醌衍生物、DFT、电子亲和力、还原电位、氧化还原液流电池、溶剂化自由能、SMD 溶剂化模型