葡萄酒微生物群落建立了复杂的生态系统,调节香气化合物的形成,但只有少数研究寻求特定微生物与葡萄酒挥发性物质之间的相关性。本研究结合了代谢条形码和代谢组学,以识别与杜罗河标志性地区 3 个著名品种的葡萄酒挥发性特征相关的真菌和细菌微生物生态位。在整个自然发酵过程中,鉴定了三个主要的微生物生态位,并且 Hanseniaspora - Saccharomyces 的演替时间取决于品种。最大的生态位包括 Hansenias pora、Aureobasidium、Alternaria、Rhodotorula、Sporobolomyces、Massilia、Bacillus、Staphylococcus 和 Cutibacterium,它们与 7 种代谢物呈正相关,即乙偶姻、乙酸异戊酯、丙酸乙酯、c-3-己烯醇、苯乙醚和 4-乙基苯酚。发酵酵母S. cerevisiae、Torulaspora delbrueckii和Meyerozyma caribbica与γ-丁内酯、t-威士忌内酯、异戊醇、癸酸乙酯、异丁酸乙酯、琥珀酸二乙酯、异戊酸、4-乙基愈创木酚和4-丙基愈创木酚呈强相关性。 Lachancea quebecensis 与几种致病真菌(青霉菌、白粉病菌、核盘菌、曲霉菌、Mycosphaerella tassiana)和细菌(假单胞菌属、酸拟杆菌、泛菌、Steno trophomonas 和 Enhydrobacter)聚类,与各种单萜醇和降异戊二烯类化合物(包括芳樟醇和 β-紫罗兰酮)呈正相关,此外还与苯甲醇、二乙酰、乙酸异丁酯、乙基香草酸酯和甲基香草酸酯呈正相关。代谢物-微生物群相关性表明品种特异性可能是区域芳香特征的基础。
预期用途 液体巯基乙酸盐培养基是一种用于无菌控制和培养苛刻厌氧和需氧微生物的液体培养基。 描述 液体巯基乙酸盐培养基是一种通用液体培养基,用于培养和分离苛刻厌氧和需氧微生物。它也可用作无菌测试的增菌培养基。该培养基符合美国药典 (USP)、欧洲药典 (EP) 和日本药典 (JP) 中统一方法的要求以及 ISO 7937 分离产气荚膜梭菌的要求。典型配方* (g/l) 酪蛋白酶解物 15.0 酵母提取物 5.0 葡萄糖 5.5 氯化钠 2.5 巯基乙酸钠 0.5 L-胱氨酸 0.5 刃天青 0.001 琼脂 0.75 最终 pH 值为 7.1 ± 0.2(25°C)
与各种亲电伙伴进行环加成反应,5 Zhao 等人和 Glorius 等人独立报道了[5 + 4] 环加成反应,以合成不同大小的高度功能化的环。6a、b Glorius 等人随后通过协同 N-杂环卡宾有机催化和钯催化,实现了乙烯基碳酸亚乙酯与烯醛的首次对映选择性[5 + 2] 环化反应,6c 而 Liang 等人报道了配体控制的乙烯基碳酸亚乙酯与萘酚之间的[3 + 2] 和[3 + 3] 环加成反应。7 尽管进行了这些广泛的研究,但我们不知道有关乙烯基碳酸亚乙酯[4 + n] 环加成反应的报道。 [4 + n] 环加成反应,尤其是 [4 + 2] 环加成反应,在合成有机化学中起着关键作用,因为它们可以快速生成具有挑战性但具有合成价值的环状化合物
表1:乙酸盐的原子部分电荷。缩写:羧酸酯基的OM-氧原子; C COO-羧酸酯基的碳原子; UA-联合原子; C CH 3-甲基的碳原子
嘉奖令如下:第 18 军警旅总队及其附属部队在 1967 年 9 月 26 日至 1968 年 10 月 31 日期间支援越南共和国军事行动中表现出色。作为越南共和国所有非战术宪兵组织的指挥和控制总部,支队的官兵在维持整个战区下属指挥方面表现出非凡的奉献精神、毅力和专业精神。他们不懈努力,加班加点,确保旅内所有部队在指定的阳光充足的地区保持高度安全。军事警察旅 (HEADQL\.RTERS A:\D 总部支队) 的成员表现出了卓越的远见卓识和组织才能,在提供路线侦察、路线护送和警卫方面尤为成功;在提供\·id
有关其他技术,销售和订单帮助,请联系我们的销售代表©2023。联合石化。用户只有在未改变和完成时,才能将本版本的文档转发,分发和/或影印本,包括其所有标题,页脚,免责声明和其他信息。您不得将此文档复制到网站。联合石化不能保证典型(或其他非规定)值。典型值仅表示在指定日期使用我们的测试方法在我们的实验室中测试属性时,人们期望的值。某些产品属性并不经常测量,因此典型值可能不会基于统计相关的测试数量。可以对代表性样本而不是实际产品进行分析。信息是该文档仅与任何其他产品或材料结合使用时,仅与命名产品或材料有关。我们将信息基于被认为是可靠日期可靠的数据,但我们没有代表,或以其他方式表示明确或隐含的保证,具有特定目的的适用性,适用性,适用性,准确性,可靠性,可靠性或完整性或所描述的产品,材料或过程。用户对所有使用材料或产品的使用以及其感兴趣领土上的任何过程都负责。我们对直接或间接遭受或与使用或依赖本文档中任何信息有关的任何损失,损害或伤害的责任明确承担责任。对侵犯专利的保证,没有任何对任何产品或过程的认可,我们明确否认任何相反的含义。
本文包含的信息,包括但不限于数据,陈述和典型价值观,以真诚地给出。lg Chem不提供任何保证或保证,表示或暗示,(i)在本文中所述的结果将在结束条件下或(ii)在任何纳入LG化学材料,产品,建议或建议的设计的有效性或安全性下获得。此外,本文包含的任何信息均不得解释为具有法律约束力的一部分。尤其是,典型值应仅视为参考值,而不是结合最小值。每个用户都承担着自己确定LG Chem材料,产品,建议或建议其自身特定用途的适用性的全部责任。每个用户必须识别并执行所需的所有测试和分析,以确保其成品零件包含LG化学材料或产品将是安全且适合在最终使用条件下使用的。由于产品的质量提高,可以更改本文包含的数据。
缩写 术语 As 砷 Ba 钡 BBzP 邻苯二甲酸丁苄酯 BMI 体重指数 BPA 双酚 A BPB 双酚 B BPF 双酚 F BPAF 双酚 AF BPAP 双酚 AP BPP 双酚 P BPS 双酚 S BPZ 双酚 Z BuP 对羟基苯甲酸丁酯 BzP 对羟基苯甲酸苄酯 Ca 钙 Cd 镉 CDC 疾病控制和预防中心 CI 置信区间 CMC 羧甲基纤维素 Co 钴 Cr 铬 CRP C 反应蛋白 Cu 铜 DBP 邻苯二甲酸二丁酯 DCHP 邻苯二甲酸二环己酯 DEP 邻苯二甲酸二乙酯 DEHP 邻苯二甲酸二(2-乙基己基)酯 DIBP 邻苯二甲酸二异丁酯 DMP 邻苯二甲酸二甲酯 DNHP 邻苯二甲酸二正己酯 DOP 邻苯二甲酸二正辛酯 EDCs 内分泌干扰化学物质 EI 电子电离 EtP 对羟基苯甲酸乙酯 EU 欧洲 FDA 美国食品药品管理局 Fe 铁 FHP 女性卫生用品 GM 几何平均数 GSD 几何标准差 HeP 对羟基苯甲酸庚酯 HIV 人类免疫缺陷病毒 Hg 汞
K 4816-107.1 邻苯二甲酸二乙酯测试方法(共沸蒸馏法) H19.03.29 纳入 NDS K 4101、NDS K 4102
高度集成的可拉伸电子产品的发展需要开发可扩展的(亚)微米导体图案。共晶镓铟 (EGaIn) 是一种适用于可拉伸电子产品的导体,因为其液态金属特性使其在变形时具有高电导率。然而,它的高表面能使其以亚微米分辨率进行图案化具有挑战性。在此,我们通过首次报道 EGaIn 的电沉积克服了这一限制。我们使用一种非水基乙腈电解质,该电解质具有高电化学稳定性和化学正交性。电沉积材料可产生低电阻线,在(重复)拉伸至 100% 应变时仍保持稳定。由于电沉积受益于用于图案化基底金属的成熟纳米制造方法的分辨率,因此提出的“自下而上”方法通过在纳米压印预图案化的金种子层上进行电镀,在弹性体基板上实现了 300 nm 半间距的 EGaIn 规则线的创纪录高密度集成。此外,通过填充高纵横比通孔,实现了垂直集成。该功能通过制造全向可拉伸的 3D 电子电路概念化,并展示了用于制造微芯片互连的稳定镶嵌工艺的软电子模拟。总体而言,这项工作提出了一种简单的方法来解决高度集成 (3D) 可拉伸电子产品中的金属化挑战。