Lin先生自2019年8月以来一直是Synertec Limited(ASX:SOP)董事会的一部分,并于2021年4月1日成为独立的非执行主席。Lin先生于2016年12月22日被任命为ASX上市公司Bubs Australia Ltd(ASX:BUB)的非执行董事,并于2017年8月16日担任主席,然后于2019年10月22日担任执行主席。林先生于2023年4月6日从该职位辞职,并于2023年5月30日退休,担任公司董事。Lin先生于2017年11月3日被任命为健康与植物蛋白质组有限公司(ASX:HPP)的非执行董事,执行董事从2020年7月1日任命执行董事,并于2021年8月4日执行主席,然后于2022年6月30日退休。Lin先生于2019年4月9日被任命为Ecargo Holdings(ASX:ECG)Limited的非执行董事,并于2019年10月30日辞职。
阅读是一项必不可少的技能,不仅需要在学校成功,而且要维持越来越有识字社会的高质量生活。技术的变化改变了阅读格式,并提高了扫盲环境的范围和复杂性,从而给基础阅读技能带来了更大的压力。这些技能的发展发生在与学习书面语言的形式和功能相关的相应神经发展及其与口语的关系。学习阅读的困难与成功学习的神经模式有关。因此,对阅读神经基础的研究为扫盲和阅读障碍的发展提供了信息。最近的进步是基于行为和大脑研究的40多年研究所提供的显着基础(Perfetti和Helder,2022年是对这项研究的评论)。该基础建立了有关阅读和学习阅读的认知过程的基本事实,包括对构成印刷单词的身份的正交,语音和语义信息的获取,并由口语和概念知识支持。一个强大的发现是语音知识,例如,对毫无意义的语音段的意识会影响阅读习得和发育阅读障碍。对语音学水平(音素)的意识对于阅读字母写作系统和未能达到这种意识的失败尤其重要。在全球范围内,大多数孩子都学会阅读非字母语言。因此,为了了解阅读发展的普遍性及其使用特定语言和写作系统的变化,跨语言研究很重要。中文阅读引起了最多的研究关注,可以作为字母阅读的比较。例如,语音知识与中国阅读发展有关,就像字母阅读的发展一样。然而,视觉正面知识,视觉知识,形态意识,词汇量,工作记忆和其他一些因素可能与中国儿童识字的语音知识一样重要。
研究人员利用逆转录腺病毒相关病毒中表达的化学遗传工具选择性地操纵 IC 中的神经活动,这种病毒专门表达由设计药物专门激活的设计受体 (DREADD)。这些病毒本质上是无害的病毒,神经科学家利用它们在特定脑细胞中表达蛋白质,在这种情况下促使它们产生 DREADD。
与本文无关的竞争性经济利益:OC 报告称,他已收到 AskBio(2020 年)的咨询费,已收到 Expression Santé(2019 年)的撰写普通观众短文的费用,已收到 Palais de la découverte(2017 年)的普通观众演讲演讲费,并且他的实验室已收到 Qynapse(2017 年至今)的资助(支付给该机构)。他的实验室成员与 myBrainTechnologies(2016 年至今)共同指导了一篇博士论文。OC 的配偶是 myBrainTechnologies(2015 年至今)的员工。OC 已向世界知识产权组织国际局提交了一项专利(PCT/IB2016/0526993、Schiratti JB、Allassonniere S、Colliot O、Durrleman S、一种确定生物现象时间进程的方法以及相关方法和设备)(2016 年)。
While the term "neurodiversity," first coined by sociologist Judy Singer in the late 1990s and popularized by journalist Harvey Blume, has been invaluable in fostering greater understanding and acceptance of neurological differences, it was further amplified by Steve Silberman's influential book NeuroTribes: The Legacy of Autism and the Future of Neurodiversity (2015), which brought the concept to a broader audience.和对神经系统差异的接受通常意味着分类 - “典型”和“非典型”大脑之间的区别。神经习得转移了重点,强调每个人的大脑都存在于个性的连续体上。这种观点不仅避免了无意的等级制度,而且还促进了共同的人类感,庆祝我们的共同点和我们独特的神经概况。
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
摘要:背景:针对正常和部分非正常发育人群的研究表明,早期运动和交流发展之间存在关联,证明了姿势发育如何支持交流进步。然而,这种关系在早产人群中很少得到研究。目的:本研究旨在描述矫正年龄 6 个月的极早产儿的运动(粗大和精细运动)和交流(接受和表达)技能及其关联,重点关注坐姿成就和早期发声。方法:使用 BSID-III 评估 70 名无重大脑损伤的极早产儿(≤ 32 周)的粗大和精细运动技能、接受和表达性语言技能以及认知技能,并分为掌握(坐姿)、部分掌握(新兴坐姿)或未掌握(非坐姿)无支撑坐姿。使用 Interact 软件(版本 20.8.3.0)对观察部分中的坐姿(看护者支撑、手臂支撑和不受支撑)的比例持续时间进行编码。使用 CHILDES 软件 v11 对亲子游戏互动中每分钟的发声频率(发声、牙牙学语和总数)进行编码。结果:相关性分析表明,运动综合得分与语言得分(综合和表达量表)之间以及粗大运动与表达性语言量表得分之间存在显著的正相关,但手臂支撑的坐姿持续时间与发声之间呈负相关。此外,ANCOVA 显示,看护者的 BSID-III 表达性语言量表得分和发声次数明显高于非看护者和新兴看护者。结论:这些发现为早产儿早期运动和发声发育之间的联系带来了新的证据,强调了使用观察工具和标准化工具来识别发育迟缓和制定个性化干预方案的重要性。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
ChatGPT 和其他 AI 工具的公开使用正在对我们在教育等各个领域的生活产生变革性影响。许多语言学习者一段时间以来一直是支持 AI 的工具的狂热用户,例如 Google 翻译、文本编辑器(如 Grammarly)或语音助手。虽然人们普遍对 AI 产品在 L2 教学和学习中的某些用途持积极态度,但其他用途却存在争议。本章讨论了将 AI 工具集成到指导的 SLA(第二语言习得)中的问题,重点关注机器翻译、聊天机器人和基于 AI 的书面纠正反馈工具。它建议,基于现有的研究和使用 AI 工具进行教学实践的报告,L2 教师应采取批判性、平衡的方法将 AI 集成到 L2 教学中,充分利用生成式 AI 的优势,同时考虑到其缺点。