如果出现以下情况,请在接种 SKYCovion 前咨询您的医生、药剂师或护士: • 您以前在注射任何其他疫苗或接种 SKYCovion 后出现过严重的、危及生命的过敏反应或呼吸问题。 • 您曾在任何针头注射后晕倒过。 • 您的免疫系统较弱,原因是患有 HIV 感染等疾病或服用影响免疫系统的药物(如皮质类固醇)。 • 您发高烧(超过 38°C)或感染严重;但是,如果您有轻微发烧或上呼吸道感染(如感冒),您可以接种疫苗。 • 您患有血友病和血小板减少症等出血性疾病,或者您正在服用预防血栓的药物。
15。Hilf,N.,Kuttruff-Coqui,S.,Frenzel,K.,Bukur,V.,Stevanović,S.,Gouttefangeas,J.,Platten,M.,Tabatabai,G. Ges,A.,Kreiter,S.,Von Deimling,A.,Skardelly,M.,Migliorini,D.,Kroep,J.R.,Idorn,M.,Rodon,J.,Piró,J.,Poulsen,H.S. Iesel,K.,Derhovanessian,E.,Rusch,E.,Bunse,L.,Song,J.,Heesch,S.,Wagner,J.,Kemmer-Brück,A. ,Maurer,D.,Weinschenk,T.,Reinhardt,J.,Huber,J.,Rammensee,H.-G.,Singh-Jasuja,H.,Sahin,U. &Wick,W.针对新诊断的胶质母细胞瘤进行积极个性化疫苗接种试验。自然565,240–245(2019年)。
摘要:尽管近年来通过靶向疗法和免疫疗法在治疗控制方面取得了进展,但高级别黑色素瘤仍然是一种主要的危及生命的疾病。这项工作介绍了一种多管齐下方法的临床前水平测试,该方法包括在 Intralipid ® 中加载免疫治疗(ICOS-Fc)、靶向(索拉非尼)和化疗(替莫唑胺)药物,Intralipid ® 是一种生物相容性的纳米乳剂,在完全肠外营养的临床安全使用中有着悠久的历史。这种药物组合已被证明可以在免疫系统的参与下抑制肿瘤生长和血管生成,而 ICOS-Fc 起着关键作用。使用亚治疗剂量的药物已经实现了对皮下黑色素瘤小鼠模型中肿瘤生长的抑制,这很可能是纳米乳剂的靶向特性的结果。如果转化为人类环境,这种方法应该能够在不增加毒性作用风险的情况下实现治疗效果。
1981 年,Danielsson 和 Lindman 将微乳液定义为“水、油和两亲物的体系,是一种光学各向同性、热力学稳定的液体溶液”(Danielsson & Lindman,1981)。通常,微乳液可以描述为水、水不溶性有机化合物和表面活性剂/助表面活性剂混合物的伪均匀混合物(Paveglio 等人,2021 年)(图 1)。从图 1 可以清楚地看出,考虑到油/水或水/油微乳液的类型,可以通过以不同的混合比混合水、油、表面活性剂/助表面活性剂来制备微乳液。两亲物(表面活性剂/助表面活性剂混合物)通过界面吸附降低油水界面张力,从而最大限度地减少与表面形成相关的正自由能分散变化(Sharma 等人,2016 年)。微乳液只是一种类似的乳液,属于不同类别的胶体系统。我们可以观察到物质的所有三种可能状态的胶体系统——气体、液体和固体。
摘要 癌症是指以细胞异常生长为特征的一系列疾病。细胞毒性药物无法区分快速分裂的健康细胞和快速增殖的癌细胞,从而产生了细胞毒性抗癌药物最臭名昭著的不良反应。纳米乳剂是纳米技术的重要工具,具有治疗和临床应用。目前,纳米乳剂被认为是用于靶向递送亲脂性抗肿瘤药物的最可行的纳米载体之一。除了解决水溶性问题外,这些制剂还可以针对癌细胞进行特异性靶向递送,甚至可能被开发用于克服多药耐药性。纳米乳剂克服了与传统药物递送系统相关的问题,例如生物利用度低和不依从性。本文综述了纳米乳剂在癌症治疗中的应用,以阐明该技术的当前地位。
摘要:当前努力的目标是确定和创建一种可以有效治疗糖尿病的贝格列净小乳剂。建议使用贝格列净来帮助 2 型糖尿病患者在结合良好的饮食和定期运动的情况下改善血糖水平的控制。此外,贝格列净通过口腔的吸收有限(在 50% 到 70% 的范围内)。这项工作的目的是创建包含贝格列净的纳米乳剂配方并评估其体外有效性。纳米乳剂由蒸馏水、吐温 80、助表面活性剂(聚乙二醇 400)、各种油(油酸)组成,含有 0.01% 的贝格列净。超声波加工技术用于创建各种油包水纳米乳剂。对纳米乳剂配方进行了体外药物释放研究、稳定性研究、热力学耐久性测试、FTIR、pH 和粘度。关键词:贝格列净,粘度,纳米乳剂,聚乙二醇。
黑色素瘤是最具侵袭性的皮肤癌,人们已研究了多种治疗方法来治疗这种疾病,但耐药性仍然是传统疗法失败的重要因素。本文描述了海藻酸盐、壳聚糖、普鲁兰多糖及其组合纳米乳剂的开发、优化和特性,以及它们作为药物输送平台在黑色素瘤治疗中的潜在应用。设计了一种新型纳米乳剂输送系统,并通过确定体外药物释放、细胞活力 (MTT)、细胞凋亡 (ELISA) 和共聚焦显微镜对其进行了评估。对纳米乳剂对 BRAF 突变黑色素瘤 (A375) 和角质形成细胞 (HaCaT) 细胞的影响进行了比较分析,并选择“普鲁兰多糖-壳聚糖”纳米乳剂作为黑色素瘤药物输送的方法。用载有阿霉素的最佳纳米乳剂治疗 72 小时后,黑色素瘤细胞凋亡诱导率增加至 90%。同样,在同样的治疗中,黑色素瘤细胞的存活率降低了 70%。更重要的是,用阿霉素处理的 A375 细胞存活率为 100%,而用载有阿霉素的纳米乳剂处理的细胞存活率仅为 30%。所取得的结果表明药物载体的聚合物组合的重要性以及药物释放模式对治疗效率的影响。这为消除药物外排相关的化学耐药性提供了潜力。
该公司致力于创新,其多样化的产品系列包括润滑剂、脱脂剂、增产添加剂和溶剂、防乳剂、腐蚀抑制剂、破乳剂、乳化剂和水力压裂添加剂。这些解决方案专为在高温高压条件下运行而设计,可提高钻井和完井、增产和生产优化方面的性能和生产力。
摘要:生物制药是包括多肽、蛋白质、核酸和细胞产物在内的新一代药物。由于其特殊的分子特性(如分子量大、易受酶活性影响),这些产品在给药方面存在一些限制,通常只能通过肠外途径给药。为了避免这些限制,人们提出了不同的胶体载体(如脂质体、胶束、微乳剂和树枝状聚合物)来改善生物制药的递送。尽管已报道了一些局限性(如体内失败、长期稳定性差和转染效率低),但脂质体仍是一种很有前途的药物递送系统,而且只有有限数量的制剂进入了市场。胶束和微乳剂需要更多的研究来排除一些观察到的缺点并确保其在临床上的应用潜力。由于其独特的结构,树枝状聚合物在核酸递送方面表现出良好的效果,预计这些系统在未来几年将有很大的发展。这是两篇综述文章的第二部分,介绍了生物制药输送系统的最新进展。第二部分涉及脂质体、胶束、微乳剂和树枝状聚合物。
在具有抗氧化潜力的天然提取物中,西印度樱桃果实是生物活性化合物的重要来源。这项研究的目的是评估在环保条件下生产的微胶囊化和冻干的未成熟西印度樱桃果实提取物的抗氧化能力。测定了体外抗氧化活性,并将产品应用于油包水乳化液中。通过 232 nm 处的吸光度和氢过氧化物含量来测量脂质氧化产物。还研究了将西印度樱桃微粒添加到乳化液中所产生的感官特性。西印度樱桃果实的水提取物显示出高浓度的抗坏血酸(32.52 至 41.11 mg.100 mg − 1 )和还原能力;喷雾干燥后抗坏血酸的保留率为 88%。在乳化液中添加西印度樱桃产品后观察到氧化抑制:在加速条件下对照样品中 9 天后的氢过氧化物含量为 14.03 mmol。 L − 1 和 3.02 至 3.60 mmol。L − 1 在含有 TBHQ 或西印度樱桃微粒(100-200 mg.kg − 1 )的样品中。此外,与合成抗氧化剂相比,微粒没有表现出感官效果。从绿色水果中简单水提取后获得的西印度樱桃微粒是有效的,是脂质乳剂氧化稳定性的潜在新成分。