个人护理和制药行业使用乳液科学及其副产品广泛地制作乳霜和乳液,包括水和油溶成分。虽然预测冷却和加热仅占用于制造乳液系统的能源总支出的90%以上,但目前用于处理此类乳液的方法需要大量的时间和能量。乳液技术的冷过程将变得更加可取,而消费者已经开始对可持续和环境友好的产品和程序表现出兴趣。一种先进的冷乳化方法,用于制造一种局部剂量剂型,以纳米乳液的形式为先进的药物输送系统开发了一种,以克服热质药物的制造挑战,并在与常规局部剂量相比时具有可持续性且具有可持续性和环保性的成本效益。纳米乳液的产生将导致一种具有热力学稳定的配方,并结合了两个不混溶的液体,以在存在适当的稳定剂的情况下创建稳定的同质组合。纳米乳液的稳定性和液滴大小使其与常规乳液不同。较小的液滴尺寸可以通过皮肤表皮增加其稳定性和穿透。在这篇综述中,重点是提供对冷乳化的基本理解,作为纳米乳液的制剂技术,其表征,应用,各种专利以及涉及纳米乳液的临床试验。这些信息可以作为进一步开发和改进涉及纳米乳液的技术和技术的基础。
层次上的多孔结构结合了微孔度,中膜性和微孔度,以增强孔隙可及性和运输,这对于开发高性能材料至关重要,用于生物制造,食物和药物应用。这项工作旨在通过3D打印Pickering型高内相乳液(Pickering-iphipes)来开发4D打印的智能分层大孔结构。关键是表面活性(羟基丁基化)淀粉纳米材料的液化,包括淀粉纳米晶体(SNCS)(从蜡质玉米淀粉通过酸水解)或淀粉纳米颗粒(SNP)(SNPS)(通过超声处理获得)。通过使用冷等离子体技术嫁接1,2-叔丁烯氧化物来增强其表面疏水性,改善其聚集,从而获得胶体稳定的拾音器,从而通过每种表面稳定的凝固性凝固性凝聚力来提高其表面疏水性,从而提高其表面疏水性,从而增强其表面疏水性,从而提高其表面疏水性,从而提高其表面疏水性,从而提高其表面疏水性,从而实现来制造功能化淀粉材料的创新程序。 在加入了修改后的SNC或SNP之后,开发了液滴的液滴,从而形成了类似凝胶的结构。 这些皮克林船的3D打印开发了一种高度相互连接的大孔结构,具有具有热响应行为的自组装特性。 作为一种潜在的药物输送系统,这种热重孔3D结构在体温下提供了较低的临界溶液温度(LCST)型相变,可用于生物活性化合物的智能释放领域。来制造功能化淀粉材料的创新程序。在加入了修改后的SNC或SNP之后,开发了液滴的液滴,从而形成了类似凝胶的结构。这些皮克林船的3D打印开发了一种高度相互连接的大孔结构,具有具有热响应行为的自组装特性。作为一种潜在的药物输送系统,这种热重孔3D结构在体温下提供了较低的临界溶液温度(LCST)型相变,可用于生物活性化合物的智能释放领域。
由于它们在生物制造,吸附,催化和能量转化应用方面具有巨大的潜力,因此人们对制造4D印刷的层次多孔结构从分子水平到宏观尺寸有很大的关注。为此,对于设计创新的构造,必须了解4D打印中智能材料的结构功能关系,而这些构建体不限于任何特定的自由度。在这里,我们报告了通过3D打印pickering型臀部的3D打印,以制造热响应性大量聚合聚合物高的内相乳液(Poly-hipes)。基于水的皮带油的油墨含有甲基纤维素/kappa-carrageenan混合物(非交叉链接)作为连续相,该相通过纤维素纳米晶体和纤维素纳米纤维的混合胶体稳定。基于皮克希的墨水显示出具有出色粘弹性界面特性的非线性和时间依赖性振动响应。在基于热融化的基于挤出的印刷过程中,Pickering-iphes的原位交联很容易地制造出多挑战型,这产生了一系列3D打印的热反应层次层次MAC ROPOLOPORFORFURES。4D打印的对象提出了高度相互连接的敞开多孔结构,该结构本质上具有热响应性。此外,这些4D结构显示出高机械强度,并具有出色的自我恢复性能。我们的结果提供了通过调节乳液配方在不同温度下开发具有形状记忆特征的热响应MAC rop的前景。
*家禽疾病系,动物健康研究所,本ha分支,农业研究中心(ARC),埃及Benha 12618; Y生物技术系,农业研究中心动物健康研究所(ARC),吉萨12618,埃及; Z Holding Company用于生物产品和疫苗的公司,Dokki,Giza 12311,埃及; X NAQAA纳米技术网络(NNN),埃及吉萨; #农业研究中心动物健康研究所(ARC)的兽医质量控制参考实验室,埃及吉萨12618; k努拉·阿卜杜拉曼大学(Nourah Bint Abdulrahman University,riyadh 11671),科学学院生物学系,沙特阿拉伯; {Benha-Branch,Benha-Branch,农业研究中心(ARC)的生物化学系(药理学),埃及Benha 12618; **埃及Qalyubia的Moshtohor 13736兽医学院病毒学系; YY生物科学系科学与艺术学院,国王阿卜杜勒齐兹大学,拉比21911,沙特阿拉伯; ZZ国王阿卜杜勒齐兹大学科学系生物化学系,吉达21589,沙特阿拉伯; XX农业学院农业学院XX农业学院,Zagazig大学,Zagazig 44511,埃及; ##阿拉伯联合酋长国大学生物学系,阿拉伯联合酋长国15551年,阿拉伯联合酋长国;俄克拉荷马州立大学兽医学院兽医病理学系,俄克拉荷马州斯蒂尔沃特,美国俄克拉荷马州74078
摘要:在本文中,我们描述了一种基于动态复杂液晶乳液的高度负责的光学生物传感器。这些乳液的准备很容易,并且由不混溶的手性列液晶(N*)和碳碳油组成。在这项工作中,我们利用N*选择性反射来构建新的感应范式。我们的检测策略是基于通过与LC界面处的IgG抗体可逆相互作用通过可逆相互作用的硼酸聚合物表面活性剂的LC/W界面活性的变化。由于聚合物结构中的双phaphthyl单位的支撑,这种生物分子识别事件可能会改变N*组织的音高长度,该聚合物结构已知是强大的手性掺杂剂。我们证明,这些触发的反射变化可以用作检测食源性病原体沙门氏菌的有效光学读数。
我们提出了一种在不依赖于任何对称性或拓扑的晶格模型中实现零模式的方法,这些对称性或拓扑是对任何类型和强度的大部分中的无序都有坚固的。这种无对称的零模式(SFZM)是通过将带有零模式的单个位点或小群集连接到散装的单个位点或小群集而形成的,该模式用作扩展到整个晶格的“核”。我们确定了该边界与大块之间耦合的要求,这表明这种方法本质上是非遗产的。然后,我们提供了几个示例,这些示例具有任意或结构化的批量,在整体连续体中形成频谱嵌入的零模式,Midgap零模式,甚至还原耦合或障碍转移拓扑拓扑角状态的“ zeroness”。专注于使用光子晶格的可行实现,我们表明,当将光学增益应用于边界时,可以将所得的SFZM视为单个激光模式。
注意:应推断出没有侵犯陶氏或其他专利的任何专利的自由。因为使用条件和适用的法律可能因某个位置而有所不同,并且可能会随着时间而变化,因此客户负责确定产品和本文档中的信息是否适合客户使用,并确保客户的工作场所和处置惯例符合适用的法律和其他政府法规。本文中所示的产品可能无法出售和/或在代表道琼斯指数的所有地理位置中可用。提出的索赔可能未批准在所有国家 /地区使用。陶氏对本文档中的信息不承担任何义务或责任。引用“陶氏”或“公司”是指将产品出售给客户的DOW法律实体,除非另有明确指出。没有保证;明确排除了对特定目的的适销性或适用性的所有暗示保证。
Lubrizol Advanced Materials, Inc.(“Lubrizol”)希望您对此建议的配方感兴趣,但请注意,这只是一种代表性配方,并非商业化产品。在适用法律允许的最大范围内,Lubrizol 不作任何陈述、保证或担保(无论是明示、暗示、法定或其他形式),包括任何关于适销性或特定用途适用性的暗示担保,或关于任何信息的完整性、准确性或及时性的暗示担保。Lubrizol 认为此配方所基于的信息和数据是可靠的,但配方尚未经过性能、功效或安全性测试。在商业化之前,您应彻底测试该配方或其任何变体,包括配方的包装方式,以确定其性能、功效和安全性。您有责任获得任何必要的政府批准、许可或注册。本文中包含的任何内容均不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱导。与此配方相关的任何索赔可能并非在所有司法管辖区都获得批准。安全处理信息不包括安全使用所需的产品安全信息。操作前,请阅读所有产品和安全数据表以及容器标签,了解安全使用和物理及健康危害信息。您可从路博润代表或经销商处获取此配方路博润产品的安全数据表。
Afzaal,M.,Saeed,F.,Arshad,M.U。,Nadeem,M.T.,Saeed,M。,&Tufail,T。(2019)。 封装对冰淇淋和模拟胃肠道条件中益生菌细菌稳定性的影响。 益生菌和抗菌蛋白,11(4),1348–1354。 Akhtar,M。和Dickinson,E。(2001)。 水中的水中多个emulsions通过聚合物和天然乳化剂稳定。 食物胶体:配方的基本原理,258,133。 Amirsadeghi,A.,Jafari,A.,Hashemi,S.-S.,Kazemi,A.,Ghasemi,Y. 可喷涂的抗菌波斯胶 - 胶丝纳米粒子敷料用于伤口愈合加速度。 Today Communications,27,102225。 Arboleya,J.-C。,Ridout,M。J.和Wilde,P。J. (2009)。 充气棕榈油/水乳液的流变行为。 食物水胶体,23(5),1358–1365。 Beldarrain-Isnaga,T.,Villalobos-Carvajal,R.,Leiva-Vega,J。,&Armesto,E。S.(2020)。 使用双重乳液和离子胶凝方法,多层微囊泡对乳杆菌乳杆菌的生存能力的影响。 食物和生物生产加工,124,57-71。 Benichou,A.,Aserin,A。,&Garti,N。(2004)。 双重乳液用天然聚合物的杂交稳定,可捕集和缓慢释放活性物质。 胶体和界面科学的进步,108,29-41。 Boricha,A。 A.,Shekh,S.L.,Pithva,S.P.,Ambalam,P.S。,&Vyas,B.R.M。(2019)。 Bryant,C。和McClements,D。(2000)。Afzaal,M.,Saeed,F.,Arshad,M.U。,Nadeem,M.T.,Saeed,M。,&Tufail,T。(2019)。封装对冰淇淋和模拟胃肠道条件中益生菌细菌稳定性的影响。益生菌和抗菌蛋白,11(4),1348–1354。Akhtar,M。和Dickinson,E。(2001)。水中的水中多个emulsions通过聚合物和天然乳化剂稳定。食物胶体:配方的基本原理,258,133。Amirsadeghi,A.,Jafari,A.,Hashemi,S.-S.,Kazemi,A.,Ghasemi,Y.可喷涂的抗菌波斯胶 - 胶丝纳米粒子敷料用于伤口愈合加速度。Today Communications,27,102225。Arboleya,J.-C。,Ridout,M。J.和Wilde,P。J.(2009)。充气棕榈油/水乳液的流变行为。食物水胶体,23(5),1358–1365。Beldarrain-Isnaga,T.,Villalobos-Carvajal,R.,Leiva-Vega,J。,&Armesto,E。S.(2020)。使用双重乳液和离子胶凝方法,多层微囊泡对乳杆菌乳杆菌的生存能力的影响。食物和生物生产加工,124,57-71。Benichou,A.,Aserin,A。,&Garti,N。(2004)。 双重乳液用天然聚合物的杂交稳定,可捕集和缓慢释放活性物质。 胶体和界面科学的进步,108,29-41。 Boricha,A。 A.,Shekh,S.L.,Pithva,S.P.,Ambalam,P.S。,&Vyas,B.R.M。(2019)。 Bryant,C。和McClements,D。(2000)。Benichou,A.,Aserin,A。,&Garti,N。(2004)。双重乳液用天然聚合物的杂交稳定,可捕集和缓慢释放活性物质。胶体和界面科学的进步,108,29-41。Boricha,A。A.,Shekh,S.L.,Pithva,S.P.,Ambalam,P.S。,&Vyas,B.R.M。(2019)。Bryant,C。和McClements,D。(2000)。在体外评估食品和人类来源的乳杆菌种类的益生菌特性。LWT食品科学技术,106,201-208。Bou,R.,Cofrades,S。和Jiménez-Colmenero,F。(2014)。具有不同脂质源的双乳液中的物理化学特性和核黄素封装。LWT食品科学技术,59(2),621–628。Boutin,C.,Giroux,H。J.,Paquin,P。和Britten,M。(2007)。 表征和酸诱导的黄油油乳剂是由加热的乳清蛋白分散体产生的。 国际乳制品杂志,第17(6)期,696–703。 黄原胶对热变性乳清蛋白溶液和凝胶的物理特征的影响。 食物水胶体,14(4),383–390。Boutin,C.,Giroux,H。J.,Paquin,P。和Britten,M。(2007)。表征和酸诱导的黄油油乳剂是由加热的乳清蛋白分散体产生的。国际乳制品杂志,第17(6)期,696–703。黄原胶对热变性乳清蛋白溶液和凝胶的物理特征的影响。食物水胶体,14(4),383–390。