摘要。Lingga R,Adibrata S,Roanisca O,Sipriyadi,Wibowo RH,Arsyadi。2023。从细长的cat鱼(Clarias nieuhofii)中分离出的乳酸细菌的益生菌潜力。生物多样性24:4572-4580。益生菌是活产生的微生物或生物活性剂,会对动物消化产生积极影响。他们已经成功地与各种来源隔离了。最近,我们从细长的步行鱼(Clarias nieuhofii valenciennes,1840年)中分离出来并表征了乳酸细菌(LAB)。鱼类样品是从印度尼西亚曼卡岛的Batu Rusa和Paya Benua河中获得的。实验室使用浇注板法从鱼肠中分离出来。然后根据其表型性状,生化特性和16S rRNA基因鉴定对孤立的实验室进行表征。测试所选的分离株以确定其产生乳酸,溶血和抗菌活性以及抗生素耐药性的能力。所有分离株具有具有革兰氏阳性特性的杆状和短杆状细胞的特征。分离株KP1显示浓度为1.85%的种群(2.89 x 107 cfu/ml)和乳酸产生的数量。所有分离株均未表现出溶血活性,并且对抗生素表现出敏感性。十二种乳酸菌形成了针对金黄色葡萄球菌和大肠杆菌的透明区域。从细长的步行鱼中分离出的乳酸细菌表现出潜在的益生菌特征。16S rRNA基因鉴定的结果表明,分别属于kb4,kb7,kb8和kp1分别属于阴道乳酸乳杆菌,发酵乳乳杆菌,发酵乳杆菌和levilactobacillus brevis。
发酵系统中微生物群落之间的关系(H。Zhang等,2021; Zheng等,2014),实验室还产生细菌蛋白和天然抗菌肽,例如利西蛋白,乳酸乳糖蛋白,乳酸脂蛋白和小cin(Abdulhussain Kareem&Razavie and and and and and and and a alvare; alvare; alv; alv;等,2022),能够控制发酵系统中其他微生物的生长。具有高淀粉液和蛋白水解活性的实验室有助于增加daqu26中原材料的糖化和蛋白质降解,从而为DAQU中的其他微生物提供营养,并促进Daqu中微生物群落结构的形成。最后,实验室可以通过代谢乳酸,乙酸,乙酸和碳酸来促进2,4-di-di-tert叔丁醇,1-己醇和2-己烯醛,2-己烯-1- OL的产生。
6。药物特殊细节:6.1赋形剂清单:淀粉乙醇酸盐BP微晶纤维素粉末BP纯化的滑石BP纯化的滑石BP硬脂酸镁BP 6.2不兼容:没有报告的6.3架子寿命:从制造日起的36个月。6.4特殊的存储预防措施:存储在凉爽,干燥和黑暗的地方。保护光。6.5容器的性质和内容:1000片包装在一个罐子中。这样的罐子里装满了值得出口的托运人。
710021,中国2研究与开发的深度,Shaanxi Heshi Heshi Dairy Co. Ltd.,Baoji,721200,中国摘要:Kefir Grains中的乳酸细菌和酵母丰富。在这项研究中使用了六种天然开菲尔晶粒,以分离和纯化64种酵母菌菌株和108家乳酸菌菌株。总共三种乳酸细菌和一种酵母菌(乳酸乳酸菌2C6,甲基乳杆菌6171,lactocillus lactobacillus plantarum 4M2和酿酒酵母6Y6)被检查,以蛋白质含量,含水量和比氏含量,酸和比氏的能力,均具有蛋白质的能力。蛋白水解能力,酒精产生以及酸和胆汁耐受性为4M2和6Y6。冻干用于创建细菌粉,这为随后开发直接VAT式(DVS)开发剂启动器奠定了基础。关键词:开菲尔谷物,乳酸菌,酵母,16S rDNA,蛋白水解能力
行业用作集装箱建筑材料和一部分机器。尽管它们在某些条件下易受腐蚀,尽管具有抗腐蚀的保护性氧气层。寻求保护这些金属,在受限的自旋极化DNP基础下,使用局部密度B3LYP进行了有关铝和锌腐蚀抑制的理论研究,以获得分子PNNT的稳定几何形状。e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。 从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。 通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。 键长和角度的数据表明该分子是金属表面上的四方平面。 Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。 从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。 通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。 键长和角度的数据表明该分子是金属表面上的四方平面。 Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。键长和角度的数据表明该分子是金属表面上的四方平面。Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程
摘要:益生菌应用领域正在迅速扩展,包括用于控制呼吸道感染的使用。然而,益生菌能够定居肺部环境并与肺病原体竞争。在这项研究中,我们旨在评估许多商业益生菌菌株对人肺上皮细胞系A549的粘附能力。此外,我们评估了益生菌的能力,以防止囊性纤维化中主要的肺部病原体之一,铜绿假单胞菌的宿主细胞粘附,并在囊肿上释放人类外周血单核细胞(PBMCS)的病原体诱导的病原体诱导的炎症反应。乳杆菌对A549细胞的粘附能力最高。与这种观察结果一致,嗜酸乳杆菌是防止与CF痰液中铜绿假单胞菌分离物的A549细胞粘附的最有效的。A549细胞,铜绿假单胞菌和嗜酸乳杆菌的三色荧光标记以及共聚焦微透镜图像分析表明,活的和紫外菌的嗜酸乳杆菌朝向铜绿假单胞菌产生了排除效应。通过CFU计数确认了此类结果。与PBMC共同培养时,活的和UV杀死的嗜酸乳杆菌都以统计学上显着的方式减少了培养上清液中IL-1β和IL-6的量。总体而言,获得的结果指向了嗜酸乳杆菌,作为对控制铜绿假单胞菌感染的潜在加速施用的进一步研究的有趣候选者。
1卫生科学系,迪尔·皮埃蒙特·东方大学,经Solaroli 17,28100 Novara,意大利; 20032501@studenti.uniupo.it(c.p.); luca.gigliotti@med.uniupo.it(c.l.g.); ian.stoppa@uniupo.it(I.S.); sarasacchetti1996@gmail.com(S.S。); deepika.pantham@uniupo.it(d.p.); roberta.rolla@med.uniupo.it(R.R.); elena.boggio@med.uniupo.it(E.B.); salvatore.sutti@med.uniupo.it(S.S.)2 Maggiore della Carit -corso Mazzini,Corso Mazzini 18,28100意大利Novaicos S.R.L.S,Via Amico Canobio 4/6,28100 Novara,28100 Novara,Italy 4/6 anna.scomparin@unito.it 5萨克勒医学院的生理学和药理学系,特拉维夫大学,特拉维夫大学69978,以色列6临床与生物科学系,都灵拉夫罗洛大学,临床与生物科学系,Corso Raffaello,30,10125 Italino,Italino,Italino; stefania.pizzimenti@unito.it *通信:umberto.dianzani@med.uniupo.it†这些作者对这项工作做出了同样的贡献。‡这些作者对工作也同样贡献。
多环芳烃(PAHS)是具有人类健康风险的主要风险的环境污染物。生物降解是环保的,是多种持续污染物的最吸引人的补救方法。与此同时,由于大量的微生物菌株收集和多种代谢途径,通过人工混合微生物系统(MMS)的PAH降解已经出现,并且被认为是一种有希望的生物修复方法。通过简化社区结构,澄清劳动力和简化代谢型号的人工MMS构建,表现出了巨大的效率。本综述描述了PAH退化的人工MMS的构建原理,影响因素和增强策略。此外,我们确定了开发MMS朝着新的或升级的高性能应用程序开发的挑战和未来机会。
粪肠球菌129 BIO 3B是一种乳酸细菌,已安全用作益生菌产品已有100多年了。最近,由于某些粪肠球菌属于万古霉素的肠球菌。致病潜力较少的粪肠球菌组已被分为一个单独的物种(乳糖肠球菌)。在这项研究中,我研究了粪肠球菌129 Bio 3b以及粪肠球菌129 BIO 3B-R的系统发育分类和安全性,该含有天然对氨苄西林具有抗性。使用特定基因区域的质谱和基本局部比对搜索工具分析无法将3B和3B-R区分为E.粪肠球大肠杆菌或乳酸菌。然而,成功识别3B和3B-R的多焦点序列与乳酸螺旋体相同。总体基因组相关性指数表明,3B和3B-R与乳酸乳乳酵母具有很高的同源性。用E.乳酸性乳核e物种特异性引物证实了3B和3B-R的基因扩增。氨苄青霉素的最低抑制浓度被证实为3B为2 µg/ml,这是欧洲食品安全局设定的粪肠球大肠杆菌的安全标准。基于上述结果,将粪肠球菌129 Bio 3b和E.粪肠球菌129 BIO 3B-R分类为乳酸菌。除了FMS21之外,没有致病基因的缺乏表明这些细菌可安全用作益生菌。
摘要:这项研究旨在获得接种物和替代介质类型的最佳比例,以增加益生菌财团的生长,其观察到的变量包括生存能力,细胞生物量和pH中的降低。Completely randomized design (CRD) factorial consisting of 2 factors with 3 replications, factor A were the probiotic consortium (A1: Lactobacillus parabuchneri : L. buchneri : L. harbinensis , Schieferilactobacillus harbinensis and Lentilactobacillus parabuchner) with ratio 1:1:1:1:1; A2:比率1:1:1:1:2的同一财团; A3:比率1:1:1:2:1的同一财团; A4:比率1:1:2:1:1的同一财团; A5:比率为1:2:1:1:1的同一财团; A6:比率2:1:1:1:1和B因子B是替代媒体的类型(B1 =对照; B2 =椰子水(90%) +木薯粉(5%) +鱼垃圾粉(5%); B3 =豆腐液体废料(5%) + fingok(5%) + FILL(5%) + FILL fill(5%); (5%) +鱼类废物(5%)结果表明,因子A和因子B之间存在相互作用,这对生存力,细胞生物量和培养基pH值的降低具有很高的显着性(P <0.01)。总而言之,益生菌财团的最佳比例为1:1:1:2:1,中等椰子水(90%) +木薯粉(5%) +鱼废料粉(5%),可生存率为:3,02,细胞生物量:22.47 mg/mg/mg和pH 2.84。