”鉴于越来越多的证据表明乳酸在生理和病理条件下提供了各种细胞类型的信号调节功能,我们假设乳酸通过改变全面的基因表达来影响神经元功能,” Toohoku Nagatomi教授从Toohoku University的Ryoichi Nagatomi教授和研究团队研究生院以及研究团队研究生院与PH。来自东京医学和牙科大学的学生Yidan Xu和Joji Kusuyama副教授。
肠道健康:实验室可以产生维生素,短链脂肪酸和细菌素。可能会阻止有害细菌的生长;并有助于平衡有益的肠道细菌。提高了消化率和营养吸收:实验室可以改善消化和营养吸收,尤其是蛋白质的营养吸收。过敏降低:实验室可以通过分解引起过敏反应的特定蛋白质来降低某些食物(例如乳制品或小麦)的过敏性特性。抗氧化特性:一些实验室菌株产生抗氧化剂化合物,有助于与有害的自由基作斗争。压力缓解:某些实验室菌株会产生一种称为GABA的化合物,该化合物充当神经递质,可以降低血压,放松肌肉并减少心理压力。
摘要基于RNA的疗法在过去十年中迅速出现,提供了一种与常规药物有很大不同的新药物。可以对这些疗法进行编程以靶向或恢复有缺陷的基因,从而获得更多个性化的治疗方法并减少副作用。值得注意的是,RNA疗法在遗传肝病的治疗方面取得了重大进展,以小型干扰RNA治疗的遗传性透甲状腺蛋白淀粉样变性为例,这些淀粉样蛋白淀粉样蛋白使用肝脏靶向策略,例如Galnac共轭以提高疗效和安全性。基于RNA的基因编辑技术,例如基本编辑器和Prime Editor,定期散布了短暂的短篇小学重复系统,也表现出了希望最小化基因组重排和癌症风险的能力。虽然RNA疗法具有很高的精度,但仍在优化交付方法和确保长期安全性和功效方面仍然存在挑战。脂质纳米颗粒-MRNA疗法,尤其是在罕见疾病中蛋白质的替代品,已从临床前的成功中获得了支持。与病毒基因疗法相比,mRNA疗法具有更安全的特征,其基因组整合和致癌基因激活的风险降低。然而,临床试验,尤其是对于罕见疾病,面临限制,例如小样本量和短期观察期。进一步的临床前研究,包括非人类灵长类动物,对于精炼试验设计至关重要。尽管具有潜力,但RNA疗法的高成本构成了一个挑战,需要成本与私密模型来指导定价和可及性。在这里,我们讨论了基于RNA的疗法的基本方面,并展示了遗传肝脏代谢疾病中最相关的临床前和临床发展。
Giorgini L.,Benelli T.,Brancolini G.,Mazzocchetti L.(2020)。 碳纤维增强复合废物的回收以通过摇篮的方法结束其生命周期。 当前的绿色和可持续化学意见,26,1-8 [10.1016/j.cogsc.2020.100368]。Giorgini L.,Benelli T.,Brancolini G.,Mazzocchetti L.(2020)。碳纤维增强复合废物的回收以通过摇篮的方法结束其生命周期。当前的绿色和可持续化学意见,26,1-8 [10.1016/j.cogsc.2020.100368]。
1行为神经科学计划心理学系密歇根州立大学东兰辛,密歇根州48824美国2美国药理学医学院国家和卡普迪斯特里大学雅典Mikras Asias 75 11527,雅典Goudi,雅典,雅典,希腊。3医学院国家和卡普迪斯特里大学雅典大学的第一届精神病学系4 Univ Rennes,Inserm,Ehesp,Ehesp,Irset(Irset Institut de Recherche enSanté,Environnement et travail),F-35000,Rennes,Rennes,France *应向谁致辞:lonstein@mmsu.edun@mmsu
摘要:Johnsonii CNCM I-4884的益生菌菌株在体外和体内表现出抗牙齿活性。这项研究的目的是鉴定和表征Johnsonii CNCM I-4884的益生菌潜力及其安全评估。该菌株最初是基于16S基因序列分析将其分类为Gasseri的乳杆菌。整个基因组测序导致了L. johnsonii的重分类。对生物合成途径的全基因组搜索揭示了高度的合理营养,并通过大型运输和分解代谢系统平衡。该菌株还表现出对低pH和胆汁盐的耐受性,并显示出较强的胆汁盐水解酶(BSH)活性。测序结果表明缺乏抗菌抗性基因和其他毒力因子。表型测试证实,该菌株易于人类和动物相关性的8种抗生素。总的来说,在硅和体外结果中证实了约翰逊氏菌I-4884的cncm I-4884非常适合胃肠道环境,并且可以安全地用于益生菌配方中。
摘要生物时温度集成剂(TTI)为改善食品安全和防止变质提供了一种新颖的方法。这些智能工具继电器通过不可逆的色彩转移,时间和温度对它们所附加的食物的微生物质量的累积影响。在迄今为止开发的各种TTI中,生物TTI具有再现食物中发生的微生物腐败反应的优势。它们是基于乳酸细菌(LAB)生长和酸化引起的标签中包含的培养基的pH下降。在开发基于实验室的TTI时,仔细的实验室菌株选择,对TTI生产的研究和开发工作是必要的,以与在储存易腐食品的储存过程中生长的变质和致病微生物的行为相匹配。涵盖广泛的时间温度曲线是一个具有挑战性的目标,涉及不同领域(微生物学,食品科学,建模等)的研究。本章介绍了基于实验室的TTI的设计和工作原理,如何将它们进行参数化以跟踪宽范围的架子传动以及如何评估其性能。还讨论了这种使用乳酸细菌的创新方式的当前应用和未来前景。
本文报道了一种环保的锂对苯二甲酸/聚乳酸 (Li 2 TP/PLA) 复合细丝的开发,该细丝通过熔融沉积成型 (FDM) 进行 3D 打印后可用作锂离子电池的负极。通过在挤出机内直接引入合成的 Li 2 TP 颗粒和 PLA 聚合物粉末,实现了 3D 可打印细丝的无溶剂配方。通过加入平均 M n ∼ 500 的聚乙二醇二甲醚 (PEGDME500) 作为增塑剂,提高了可打印性,而通过引入炭黑 (CB) 则提高了电性能。彻底讨论了热、电、形态、电化学和可打印性特性。通过利用 3D 打印切片软件功能,提出了一种创新方法来改善 3D 打印电极内的液体电解质浸渍。© 2021 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/ by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/abedd4]
乳酸菌 (LAB) 又称乳酸杆菌目,属于革兰氏阳性菌目,具有耐酸性、发酵性强、不呼吸、不产孢的特点,呈杆状/或球形。它们喜欢厌氧条件,缺乏细胞色素。它们通常产生乳酸,本质上不产孢,并且不会移动。乳酸菌具有将碳水化合物发酵成乳酸的能力,这种特性在食品工业中得到了广泛的利用。气球菌、链球菌、乳酸菌、肠球菌、小球菌、乳酸杆菌、棒状杆菌和迷走球菌是适应在各种环境条件下生长的乳酸菌种的几个例子。它们可以在某些植物表面、土壤、乳制品、贝类和某些动物消化道中发现(Gatesoupe,1998 年)。尽管乳酸菌并不构成正常肠道微生物群中大多数物种,但人们已经进行了大量努力来人为地提高它们的优势地位(Verschuere 等人,2000 年)。根据它们分解碳水化合物的方式,乳酸菌分为两组。同型发酵组使用 Embden-Meyerhof-Parnas(糖酵解)途径将碳源主要转化为乳酸。通过使用磷酸酮醇酶
摘要:研究给定物种的多样性可以为自动启动培养物的发展提供线索。然而,很少有研究集中在乳酸杆菌delbrueckii菌株的种内多样性上,这是一种对乳制品行业技术上重要的乳酸细菌。出于这个原因,分离并表征了来自圣尼克尔保护的原产地名称(PDO)区域的乳酸杆菌菌株。遗传多样性是基于核心基因组系统发育重建和pangenome分析确定的,而表型评估涵盖了蛋白水解和挥发性复合生产潜力。总共15 L. delbrueckii ssp。乳酸化获得了独特的新菌株。遗传分析和进一步的蛋白水解活性测量表明,这些圣奈克菌株之间的变异性较低,而在Delbrueckii SSP中观察到了实质性的遗传变异性。乳酸亚种的整体。菌株之间的挥发性化合物纤维略有不同,一些菌株产生的挥发性化合物可能会引起奶酪伏鸟的发育特别感兴趣。与总体亚种的多样性相比,圣奈克菌株之间的遗传多样性相对较小,它们的独特特征和与公开可用的基因组的明显分化将其定位为开发自卫星启动培养奶酪生产的有前途的候选者。