基于石墨烯的2D纳米材料具有独特的物理化学特征,可以在各种生物医学应用中使用,包括化学治疗剂的运输和表现。在多形胶质母细胞瘤(GBM)中,肿瘤内施用的薄石墨烯氧化石墨烯(GO)纳米片在整个肿瘤体积中表现出广泛的分布,而不会影响肿瘤生长,也不会扩散到正常的脑组织中。这种肿瘤内定位和分布可以为GBM微环境的治疗和调节带来多种机会。在这里,描述了原位GBM小鼠模型中GO纳米片分布的动力学,并利用薄GOETEs作为平台的一种新颖的纳米纳米化学化学治疗方法,可用于非共价复杂的蛋白酶体抑制剂bortezomib(BTZ)。通过GO的表征:BTZ复合物,在体外持续的BTZ生物学活性在GO表面上的高负载能力。在体内,与两种原位GBM小鼠模型中的游离药物相比,BTZ复合物的单个小量内给予:BTZ复合物显示出增强的细胞毒性效应。这项研究提供了证据表明,薄和小的Goets通过在本地增加生物利用药物浓度而成为GBM治疗的纳米级平台的潜力,从而提高了治疗性的影响。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
祭坛,I。Buckanan,R。Bunker,B。Calkins,R。Calkins,R。Cameron,C。Carthreat,D。G。Chang,M。Converth,J.-H。 R. Chen,N。Chott,H。Coombes,P。Cyna,St.Das,F。DeBritain,St.Dharan,M.L.Germond,M.Ghaith,St.R.Gwolwala,J. K. Harris,N。Hassan。 M. Lee,J。Leyva。 Michaud, E. Michelin, N. Mirabolfathy, M. Mirzakhani, B. Mohanty, D. Montiro, J. Nelson, H. Neog, V. Neogi, Federus, W. Peng, L. Perna, W. L. Perry, R. Podviianiuk, St. Sant Sant, A. Pradeep, M. Pyle, R. Reid, R. Reynolds, M. Rios, A. Roberts, A. Robinson,F。J. Sander,A。Sattari,B。Schmidt,R。W. Skorza,Scorza,B。Serfass,A。 街,H。Sun。Chang,M。Converth,J.-H。 R. Chen,N。Chott,H。Coombes,P。Cyna,St.Das,F。DeBritain,St.Dharan,M.L.Germond,M.Ghaith,St.R.Gwolwala,J.K. Harris,N。Hassan。 M. Lee,J。Leyva。 Michaud, E. Michelin, N. Mirabolfathy, M. Mirzakhani, B. Mohanty, D. Montiro, J. Nelson, H. Neog, V. Neogi, Federus, W. Peng, L. Perna, W. L. Perry, R. Podviianiuk, St. Sant Sant, A. Pradeep, M. Pyle, R. Reid, R. Reynolds, M. Rios, A. Roberts, A. Robinson,F。J. Sander,A。Sattari,B。Schmidt,R。W. Skorza,Scorza,B。Serfass,A。街,H。Sun。街,H。Sun。Young,T。C. Yu,B。Zatschler,S。Zatschler,A。Zaytsev,E。Zhang,L。Zheng,A。Zuniga和M. J. Zurowski
1不列颠哥伦比亚大学的物理与天文学系,不列颠哥伦比亚大学,不列颠哥伦比亚省V6T 1Z1,加拿大2 Triumf,不列颠哥伦比亚省V6T 2A3,加拿大3,加拿大3物理系,多伦多大学,多伦多大学,多伦多大学,多伦多,安大略省M5S 1A77,加拿大4 Deparivefiísicadefísicicicatehoma,deririririric,pecansica tehoma,deririririricriririric,Iddad nord de.马德里,西班牙5个InstitutodefísicaTeóricaUam-CSIC,校园,坎多布兰科校园,28049,马德里,西班牙6号,6迪勒姆大学,达勒姆大学,达勒姆大学,达勒姆DH1 3LE,英国7 SLAC国家加速器实验室 /卡夫利粒子粒子和自然公园,北科学杂志, 360 Huntington Avenue,马萨诸塞州波士顿,美国92115,美国9太平洋西北国家实验室,华盛顿州里奇兰市,华盛顿99352,美国10物理学和天文学系,以及米切尔基本物理和天文学研究所美国科罗拉多州丹佛大学物理学,美国13美国13,美国斯坦福大学,加利福尼亚州斯坦福大学物理系94305,美国14号南部卫理公会大学,德克萨斯州达拉斯75275,美国15美国加利福尼亚大学,加利福尼亚州伯克利大学教育学院。 JATNI 752050,印度17号物理与天文学系西北大学,伊利诺伊州埃文斯顿,伊利诺伊州60208-3112,美国18号,南达科他州矿业与技术学院,南达科他州拉皮德城57701,美国19号9,1039区域道24号,萨德伯里,安大略省P3Y 1N2,加拿大20物理学和天文学学院,明尼苏达州明尼苏达州明尼苏达州55455,美国21 d。 Karlsruhe技术研究所(KIT),76344德国Eggenstein-Leopoldshafen,德国23Institutfür实验性菲西克,汉堡大学,22761汉堡,德国,德国24年汉堡,24物理学系 19282, United Arab Emirates 26 Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA 27 Laurentian University, Department of Physics, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada 28 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 29 Department of Electrical Engineering, University of科罗拉多州丹佛,丹佛,科罗拉多州80217,美国30,南达科他大学,南达科他大学,南达科他州57069,美国31劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州94720,美国32,美国32,美国圣克拉拉大学,加利福尼亚州圣克拉拉,
抗菌耐药性(AMR)是对人,动物和环境健康的主要全球威胁,它正在不断发展。应归咎于多药(MDR)细菌的发展,传播和持久性,也称为“超级细菌”。抗菌剂的有效性受到耐受性或抵抗力从首次使用的潜力而损害。用于治疗细菌,真菌,病毒和寄生虫感染的抗菌剂属于此类。随着这种耐药的增长,几种生理和生化过程可能会发挥作用。在人类历史上的关键时刻发现了抗生素,彻底改变了医学并挽救了无数的生命。可悲的是,这种“魔术子弹”之后是对它们产生抗药性的病原体。尽管在过去几十年中采取了几项建议和措施,但环境并没有跟上微生物越来越对可用药物的免疫力,这种现象称为抗菌耐药性(AMR)。鉴于AMR危机的幅度以及受其影响影响的众多社会领域,该问题的解决方案必须是全面和系统的。 在这一点上,不可能确定预测未来的情况,但是由于新型抗生素的稀缺性,AMR的调节似乎非常困难。 要解决此问题,应使用多方面的策略。 医学生,医生和药剂师必须接受持续和更新的培训。 除非迅速解决AMR,否则可能会丢失。鉴于AMR危机的幅度以及受其影响影响的众多社会领域,该问题的解决方案必须是全面和系统的。在这一点上,不可能确定预测未来的情况,但是由于新型抗生素的稀缺性,AMR的调节似乎非常困难。要解决此问题,应使用多方面的策略。医学生,医生和药剂师必须接受持续和更新的培训。可能会丢失。必须将研究的一个组成部分纳入AMR政策,以及制药行业的鼓励生产“超级细菌抗生素”。
评估用Nadunolimab治疗的PDAC患者的疗效和周围神经病的评估与吉西他滨/Nab-Paclitaxel结合使用(NCT03267316)2。所有可评估患者的肿瘤反应瀑布(a):23名(33%)患者的总体反应是最佳总体反应,28例(38%)患者患有ISD,患者有IUPD,5例(7%)患者患有ICPD;高IL1RAP表达的患者表现出明显更长的总生存期(OS)(b):从49例患者筛查的活检因肿瘤细胞上的IL1RAP表达。IL1RAP高患者的生存率显着延长,中位OS为14.2个月,而IL1RAP低患者的存活率为10.6个月。 Nadunolimab剂量依赖性降低外周神经病(C):剂量组2.5-7.5 mg/kg,并与1 mg/kg剂量组进行比较。 较高的剂量组显示出任何级别周围神经病的发生率较低。 给药的化学疗法剂量在剂量组之间是可比的。IL1RAP高患者的生存率显着延长,中位OS为14.2个月,而IL1RAP低患者的存活率为10.6个月。 Nadunolimab剂量依赖性降低外周神经病(C):剂量组2.5-7.5 mg/kg,并与1 mg/kg剂量组进行比较。较高的剂量组显示出任何级别周围神经病的发生率较低。给药的化学疗法剂量在剂量组之间是可比的。
由伊滨寄生虫引起的摘要球虫病,对家禽农场经济学和动物福利产生了重大影响。超出其对健康的直接影响,耶am氏感染会破坏导致营养不良的肠道微生物种群,并增加了由梭状芽胞杆菌引起的诸如坏死性肠炎等继发性疾病的脆弱性。伊滨感染或抗癌疫苗接种对宿主胃肠道表型和肠菌群的影响仍在研究中。在这项研究中,在受控的实验疫苗接种和挑战试验中同时评估了鸡肉盲组织组织和含量的代谢型和含量。COBB500肉鸡接种了酿酒酵母的抗菌抗球菌拨号疫苗,并挑战了15,000个Eimeria tenella卵囊。评估盲肠病理学和寄生虫负荷的定量揭示了与与感染和疫苗接种状况相关的盲肠微生物群和盲肠代谢组的改变的相关性。感染增强了微生物群的丰富度,潜在的致病物种增加,而疫苗接种升高了有益双歧杆菌。使用多词因子分析,整合了有关盲肠菌群和代谢组的数据,并确定了健康,感染和恢复鸡的独特特征。健康和恢复的鸡表现出较高的维生素B代谢,与短链脂肪酸产生细菌有关,而必需的氨基酸和细胞膜脂质代谢在感染和疫苗接种的鸡中很突出。值得注意的是,疫苗的鸡显示出与鞘脂富集,神经细胞和细胞膜的重要成分相关的不同代谢物。我们的综合多媒体模型揭示了指示疫苗接种和感染状况的潜在生物标志物,提供了诊断感染,监测疫苗接种功效的潜在工具,并指导了新型治疗或控制的发展。
霜霉病抗性 6 (DMR6) 蛋白是一种 2-氧戊二酸 (2OG) 和 Fe(II) 依赖性加氧酶,参与水杨酸 (SA) 代谢。SA 被认为是一种非生物胁迫耐受性增强剂,在番茄中发现 DMR6 的失活会增加其水平并诱导对多种病原体的抗病性。通过应用 CRISPR/Cas9 技术,我们生成了 Sldmr6-1 番茄突变体并测试了它们对干旱和晚疫病的耐受性。野生型番茄品种‘San Marzano’及其 Sldmr6-1 突变体被剥夺了 7 天的水。WT植物表现出严重的枯萎,而T 2 Sldmr6-1突变体叶片肿胀,并保持较高的土壤相对含水量。生态生理测量表明,Sldmr6-1突变体采取了节水行为,通过降低气孔导度来降低蒸腾速率。在干旱胁迫下,同化率也降低,导致气孔下腔中的CO 2浓度没有改变,并提高了水分利用效率。此外,在Sldmr6-1突变体中,干旱胁迫诱导抗氧化相关基因SlAPX和SlGST的上调以及参与ABA分解代谢的SlCYP707A2基因的下调。最后,我们首次在番茄中强调,Sldmr6-1 突变体对晚疫病的病原菌致病菌的敏感性降低。
抽象的癌症免疫疗法,特别是检查点阻断免疫疗法(CBT),可以诱导癌症生长的控制,而患者的一部分患者的反应持久反应。但是,当前大多数患者对CBT没有反应,并且耐药性的分子决定因素尚未完全阐明。安装临床证据表明,新抗原(NeoAg)的克隆状态会影响抗肿瘤T细胞反应。大多数NEOAGS均以次颅的表达表达的高肿瘤内杂物(ITH)与对CBT的临床反应不佳,并且与肿瘤反应性T细胞的浸润不良有关。然而,ITH钝性肿瘤反应性T细胞的机制尚不清楚。我们开发了一种可移植的鼠肺癌模型,以表征分别针对表达的定义的NEOAG,分别表达的NEOAG,分别以低或高ITH模型。在这里我们表明,具有相对强大的NEOAG的弱免疫原性NEOAG的克隆表达增加了低但不高的肿瘤的免疫原性。从机械上讲,我们确定克隆新核表达允许交叉呈递的树突状细胞获取并呈现两个NEOAGS。树突状细胞的双重NEOAG表现与更成熟的DC表型和更高的刺激能力有关。这些数据表明,克隆NEOAG表达可以由于更具刺激性的树突状细胞:T细胞相互作用而引起更有效的抗肿瘤反应。靶向亚克隆表达的NEOAGS的治疗疫苗可用于增强抗肿瘤T细胞反应。
摘要 本文提出了一种用于航天应用的抗辐射极性设计 14T (RHPD-14T) SRAM 单元。通过估算 65 纳米互补金属氧化物半导体 (CMOS) 技术的各种设计指标,分析了所提出的 RHPD-14T 单元的性能。基于结合抗辐射极性设计技术与合理的布局拓扑,所提出的 RHPD-14T 可以耐受所有单节点翻转和部分双节点翻转。仿真结果表明,RHPD-14T 的写入访问时间比 RSP-14T/QUCCE-10T/DICE/S4P8N/We-Quatro(@VDD=1.2V) 短 1.83 倍 / 1.59 倍 / 1.56 倍 / 1.12 倍 / 1.05 倍。 RHPD-14T的字线写触发电压比QUCCE-10T/DICE/We-Quatro/S4P8N/RSP-14T (@VDD=1.2V)高2.67×/2.22×/1.35×/1.29×/1.26×;RHPD-14T的保持静态噪声容限比DICE/S4P8N/RHPD-12T (@VDD=1.2 V)高14.85×/7.15×/1.05×。此外,蒙特卡洛(MC)模拟证明RHPD-14T波动性小、稳定性强、恢复能力稳定、抗单效应翻转(SEU)能力强。关键词:保持静态噪声容限、极性设计抗辐射、单效应翻转分类:集成电路