变更控制申请 如果您提交了强制性事件报告,您可能还需要进行变更控制申请。例如,在施工期间,您发现设计计划中的负载点计算有误。如果不进行纠正,可能会导致结构故障,并在建筑物使用时导致大量人员死亡或严重受伤。这符合向 BSR 报告的标准,您必须提交强制性事件通知和报告。为了纠正计划,总承包商还必须提交变更控制申请并要求对建筑控制申请进行重大更改。 过渡安排 如果施工中的高风险建筑受过渡安排的约束,您可能不需要为其提交强制性事件报告。 伤害、疾病和危险事件报告条例 (RIDDOR) 在建筑施工期间,如果有人因工作相关事故死亡或受伤,您可能需要制作 RIDDOR 报告。例如,如果有人从脚手架上摔下来死亡。如果根据 RIDDOR 报告了事件,您还必须提交单独的强制性事件通知和报告,前提是该事件符合向 BSR 报告的标准。例如,在建筑施工期间,建筑物的一部分倒塌并造成人员伤亡。总承包商根据 RIDDOR 报告该事件。总承包商还提交强制性事件通知和报告,因为该事件涉及结构故障,如果不加以补救,建筑物使用时可能会造成大量人员死亡或严重受伤。
3 个面板显示了 COVID-19 疫苗和流感疫苗的州级疫苗不良事件报告,包括 (A) 任何不良事件、(B) 严重不良事件和 (C) 报告为严重不良事件的比例。与 COVID-19 疫苗的所有关联均为正且具有统计学意义;橙色线的斜率分别为每 1,000,000 人接种疫苗 6.5 例和 1% 共和党人(P = .001;R 2 = 0.11)、每 1,000,000 人接种疫苗 2.2 例和 1% 共和党人(P < .001;R 2 = 0.09)和每 1,000 人报告 1.9 例和 1% 共和党人(P < .001;R 2 = 0.07)。灰线斜率表示流感疫苗与流感的关联:每 100 万接种者中有 0.1 人感染,共和党人占 1%(P = 0.07;R 2 = 0.23);每 100 万接种者中有 −0.01 人感染,共和党人占 1%(P = 0.06;R 2 = 0.08);每 1000 人中有 −0.54 人感染,共和党人占 1%(P = 0.004;R 2 = 0.07)。圆圈大小与该州疫苗不良事件报告系统报告的数量成正比。为方便查看,省略了流感疫苗的圆圈。
作者................................................................................................................................................. 41
提议者和例外权力:本 SOP 的提议者是 USACC 参谋长。提议者有权批准符合控制法律法规的本 SOP 例外或豁免。提议者可以书面形式将此批准权力委托给提议机构或其直接报告单位或实地行动机构的上校或同等级别的部门负责人。活动可以通过提供理由来请求本 SOP 豁免,理由包括对预期收益的全面分析,并且必须包括活动高级法律官员的正式审查。所有豁免请求都将由请求活动的指挥官或高级领导批准,并通过上级总部转发给政策提议者。
问题描述:潜水器装载完毕后,当潜水器仍在码头时,潜水员无法将右舷舱门闩锁机构物理移动到最完全接合的位置。它可以从外部移动,但可能无法在不损坏驱动杆的情况下从潜水器内部释放。拉什尽可能从内部接合闩锁,然后试图强行打开舱口。由于无法在一个闩锁接合的情况下打开舱口,然后第二个闩锁正常就位,他确信舱口不会泄漏或脱落。然而,外部人员可以看到右舷闩锁只是勉强接合,一些成员对这一异常表示担忧。任务主管认为这是飞行员的决定,并决定在小组没有就舱口安全性达成 100% 共识的情况下继续推进。随后的潜水很顺利,在潜水后汇报时,最初担心的人对舱口操作感到满意。大家进一步决定可以继续进行码头潜水,舱口被外面的船员强行关闭,因此它处于最远的行驶点。
致命或其他严重事故信息将转发给商业空运审查委员会 (CARB) 进行依据公法的审查,在这些情况下,总部 AMC/A3B 安全人员将要求提供更多信息。注意:由于随着更多事实的了解,事故和事故征候定义之间的事件分类可能会发生变化,因此承运人应将所有在认证运营中可能属于事故范围的事故告知总部 AMC/A3B。2. 军事包机/国防部承包任务当航空公司在执行军事包机任务或其他国防部承包任务时卷入 49 CFR 第 830 部分定义的事故或事故征候时,航空公司应以最快捷的方式将上述报告信息(第 1.a.-1.h 项)传送至伊利诺伊州斯科特空军基地的第 618 空中作战中心(加油机空运控制中心),电话为 (618) 229-0320。在下一个工作日内,还必须向以下两个机构发出额外通知:A. 总部 AMC/A3B,正常工作时间(通常为 0700-1600 CT,周一至周五),电话 (618) 229-4801 或 (618) 229-4343。如果没有答复/在非工作日,请将上述 1.a.-1.h. 段要求的信息通过电子邮件发送至以下地址:AMC.A3B.FlightMishapReport@us.af.mil。以及 B. 美国运输司令部 - 采购局 (USTRANSCOM-TCAQ),伊利诺斯州斯科特空军基地,工作时间(通常为 0700-1600 CT,周一至周五),电话 (618) 817- 9590,工作时间外/周末,电话 (618) 402-2369。打电话后通过电子邮件向您指定的承包官员提供活动的相关详细信息。如果您的合同不是由 TCAQ 管理的,请向指定的承包机构发送通知,告知您特定的 USG 合同的条款。
图 3- 20: LVRT 期间无功功率响应不理想的典型电厂案例研究 ...................................................................................................................................... 78 图 3- 21: RE 电厂外部 765 kV Bhadla-Bikaner 电路 1 的相间故障 ............................................................................................. 79 图 3- 22:通过 400 kV Bhadla 端的 400 kV Bhadla-Bhadla-2 电路 1 的 PMU 观察到的 765 kV Bhadla-Bikaner 电路 1 的 YB 故障 ................................................................................................................ 80 图 3- 23: 事件期间的 Bassi PMU 频率 ............................................................................................................................. 80 图 3- 24: 通过 SCADA 观察到的 NR 发电损失为 7120 MW ............................................................................................................. 81 图 3- 25: LVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................................. 82 图3- 26 典型电厂在 LVRT 期间无功响应满意的案例分析 ...................................................................................................................... 83 图 3- 27 典型电厂在 LVRT 期间有功响应延迟的案例分析 ...................................................................................................... 84 图 3- 28 典型电厂在 LVRT 期间有功响应不满意的案例分析 ............................................................................................. 84 图 3- 29 典型电厂在 LVRT 期间无功响应不满意的案例分析 ............................................................................................. 85 图 3- 30 典型电厂在 HVRT 期间有功响应满意的案例分析 ............................................................................................. 85 图 3- 31 典型电厂在 HVRT 期间无功响应满意的案例分析 ............................................................................................. 86 图 3- 32 典型电厂在 HVRT 期间有功响应不满意的案例分析 ............................................................................................. 86 图 3- 33 典型电厂在 HVRT 期间无功响应不满意的案例分析 ............................................................................................. 87 图3- 34: 典型电厂响应不良的案例研究 ...................................................................................................... 88 图 3- 35: 765kV Bhadla2-Ajmer 电路 2 发生相接地故障,随后 RE 电厂外部的 A/R 失败 ................................................................................................................................ 89 图 3- 36: 765kV Ajmer-Bhadla2 ckt-2 发生相接地故障,随后 A/R 失败 ............................................................................................................................. 90 图 3- 37 事件期间 RE 发电量的减少(SCADA 数据) ............................................................................................................. 90 图 3- 38: 典型电厂在 LVRT 期间具有令人满意的有功功率响应的案例研究 ............................................................................................. 92 图 3- 39: 典型电厂在 LVRT 期间具有令人满意的有功功率响应的案例研究 ............................................................................................. 92 图 3- 40: 典型电厂在 LVRT 期间有功功率响应延迟的案例研究 ............................................................................................................. 3-41:LVRT 期间有功功率响应不理想的典型电厂案例研究...................................................... 94 图 3-42 2 月 9 日事件中的 NR 太阳能发电模式......................................................................................... 95 图 3- 43 2 月 9 日事件中的 NR 太阳能发电模式 .............................................................................. 95 图 3- 44:在 Bhadla 端打开 765 kV Bhadla-Bikaner 电路 1 线路电抗器 ............................................................................. 96 图 3- 45:打开线路电抗器后 765 kV Bhadla (PG) 的电压(根据 765 kV Fathegarh-2 Bhadla (PG) 线路的 PMU 记录) ................................................................................................................ 96 图 3- 46:事件期间的 Bassi PMU 频率 ............................................................................................................. 97 图 3- 47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 在过电压阶段 I 上跳闸 98 图 3- 48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ...... 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ........................................ 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ........................................ 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究 ................................................................................................................................................ 102 图 3-53:典型 RE 电厂的逆变器数据表 ............................................................................................................................. 104 图 3-54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................... 96 图 3-46:事件期间的 Bassi PMU 频率 .............................................................................................. 97 图 3-47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 因过电压阶段 I 跳闸 98 图 3-48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ............................................................................................. 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究........................................................................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 .......................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................... 96 图 3-46:事件期间的 Bassi PMU 频率 .............................................................................................. 97 图 3-47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 因过电压阶段 I 跳闸 98 图 3-48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ............................................................................................. 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究........................................................................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 .......................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 ...................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 ...................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110
结果:在4,984例病例中,有1,357例(30.2%)报告至少一个神经精神病学ADR。New potential signals for REG included neuropathy peripheral ( n = 265; reporting odds ratio, ROR = 19.48, 95% con fi dence interval, CI 95% = 17.52-22.47; information component, IC = 2.89, IC 025 -IC 075 = 2.77-3.02), hyperesthesia ( n = 18; ROR = 12.56, CI 95% = 7.90-19.96; IC = 1.74, IC 025 -IC 075 = 1.27-2.20), altered state of consciousness ( n = 15; ROR = 5.50, CI 95% = 3.31-9.14; IC = 1.57, IC 025 -IC 075 = 1.06-2.07), depressed mood ( n = 13; ROR = 1.85, CI 95% = 1.07-3.19; IC = 0.58, IC 025 -IC 075 = 0.04-1.13)和失眠(n = 63; ror = 1.48,CI 95%= 1.15-1.89; IC = 0.38,IC 025 -IC 075 = 075 = 0.13-0.63)。For ENC comprised depressed mood ( n = 4; ROR = 5.75, CI 95% = 2.15-15.39; IC = 1.74, IC 025 -IC 075 = 0.76-2.73) and cognitive disorders ( n = 3; ROR = 4.71, CI 95% = 1.51-14.66; IC = 1.54, IC 025 -IC 075 = 0.41-2.68)。
研究8使用2002年至2003年的数据,在AP的疫苗施用后3天内投资了与疫苗相关的AE的潜在危险因素,约有125万只狗。该研究评估了在以预防性护理为重点的实践中,在360家医院的电子病历中报告了AE。AES的风险随体重的减轻而增加,并且每次访问的疫苗数量增加。 即使控制体重和疫苗数量,也确定了AE率的繁殖差异。 这项研究在随后在国内和国际上的疫苗接种指南中引用。 9,10以及在过去的20年中,在Hospi TAL方案和个体繁殖的流行中,犬类疫苗制造方法的潜在变化,当前犬VAC现象的危险因素可能发生了变化。 租赁研究的目的是利用相同的兽医实践来估计最近5年狗疫苗给药后3天内记录的AE的发病率和风险因素。AES的风险随体重的减轻而增加,并且每次访问的疫苗数量增加。即使控制体重和疫苗数量,也确定了AE率的繁殖差异。这项研究在随后在国内和国际上的疫苗接种指南中引用。9,10以及在过去的20年中,在Hospi TAL方案和个体繁殖的流行中,犬类疫苗制造方法的潜在变化,当前犬VAC现象的危险因素可能发生了变化。租赁研究的目的是利用相同的兽医实践来估计最近5年狗疫苗给药后3天内记录的AE的发病率和风险因素。