组织影响,从显性因素到隐性因素,阐释了事故发生的本质原因。本文基于HFACS模型,对日本一起临近空难案例进行了系统分析,建立了四层逻辑体系,找出了该案例航空事故原因中的人为因素,并根据相关分析提出了保障飞行安全的建议。案例分析表明,HFACS方法适用于分析各类航空事故,寻找事故发生的根本原因。
2. 然而,尽管取得了这些进步,维护系统仍然容易受到人为因素的影响。人是会犯错的,因此错误和失误仍然会发生。通过良好的培训和能力评估制度以及创造一种促进良好工程实践的文化,可以减少出错的可能性。该组织还需要创造一个环境,让工程师可以专注于手头的任务,而不会受到外部压力,不会因为向个人施加压力而损害工作的质量和完整性。正是这些违反流程和程序的行为,让个人和组织都面临事故和事件的风险。
免责声明。本出版物中包含的信息会根据不断变化的政府要求和法规不断审查。任何订户或其他读者都不应在未参考适用法律和法规和/或未征求适当的专业建议的情况下根据任何此类信息采取行动。尽管已尽一切努力确保准确性,但国际航空运输协会对因错误、遗漏、误印或误解本出版物内容而造成的任何损失或损害概不负责。此外,国际航空运输协会明确表示,对于任何个人或实体(无论是否购买本出版物)依赖本出版物内容而做出或不做的事情以及由此造成的后果,国际航空运输协会概不负责。
机组资源管理 (CRM) 是全球航空业为减少事故数量、实现全球航空运输安全高效而做出的重要努力之一。众所周知,自 20 世纪 70 年代以来,航空当局以及国际民用航空组织 (ICAO) 在这方面做出了许多努力。了解这些飞行员的努力是否充分至关重要。本文通过对 CRM 预定时间段内的事故率进行无偏比较并将其命名为其发展阶段和为发展所做的努力,质疑全球 CRM 工作的有效性。本研究旨在通过分为五个阶段并根据这些阶段对事故和事件发生率进行分析来定义 CRM 概念。本研究的结果表明,多年来,持续的 CRM 发展提高了全球航空运输安全性。重点应放在装备更好、训练有素的飞行员身上,提高他们在操作程序中的语言能力。
4-5-2020 进一步提升通用航空飞行安全:飞机起飞事故分析 黄晨宇 内布拉斯加大学奥马哈分校 美国国家运输安全委员会(NTSB)的数据显示,2014 年至 2019 年,通用航空(GA)占美国航空运输相关事故和事故征候总数的 76%。查明原因是飞机事故调查中最重要的任务之一,也是主动预防飞机事故的关键策略。由于飞机配置、飞行运行环境和机组人员工作量的变化,飞机和机组人员在飞行的每个阶段的表现不同,因此飞机事故的原因可能因飞行阶段而异。大多数事故发生在最后进近和着陆阶段,许多研究人员从不同角度对其进行了研究。然而,关于起飞阶段的飞行安全研究却很少,而起飞阶段是通用航空飞机事故和事故征候数量第二多的阶段。充分了解通用航空飞机起飞事故的原因对于制定更有效的飞机起飞风险缓解和事故预防对策至关重要。本研究的目的是通过分析美国国家运输安全委员会发布的飞机事故调查报告来了解通用航空飞机起飞事故的原因。为了更好地了解通用航空飞机起飞事故的原因,以下研究旨在
摘要:在系统论中,对复杂事故的描述不仅限于对事件序列/单个条件的分析,而是强调非线性功能特性,并在安全条件下,将人或技术性能与系统正常运行联系起来。因此,对整个系统实体的研究不再是对具体情况的抽象,而是超越了基于线性方法的分析所设定的理论限制。尽管存在上述问题,但所考虑函数的非线性或限制支持了不存在完整事故分析方法的假设,这要求对分析中引入的元素有广阔的视野,因此可以识别与标称参数或触发因素相对应的元素。
摘要:在系统理论中,对复杂事故的描述不仅限于对事件序列/单个条件的分析,而是强调非线性功能特性,并在安全条件下构建与系统正常运行相关的人为或技术性能。因此,对整个系统实体的研究不再是对具体情况的抽象,而是超越了基于线性方法的分析所设定的理论限制。尽管存在上述问题,但所考虑函数的非线性或限制支持了不存在完整事故分析方法的假设,这要求对分析中引入的元素有广阔的视野,因此可以识别与标称参数或触发因素相对应的元素。
图 1.1 第一起致命航空事故 2 图 1.2 1961-99 年全球商业航空公司整体和致命事故 3 图 1.3 美国通用和军用航空的事故趋势 4 图 1.4 1950 年至 2000 年间美国海军航空事故率和干预策略 5 图 1.5 原来的直线型航母飞行甲板和改进的斜角型航母飞行甲板 6 图 1.6 1996 年至 2000 财年美国海军/海军陆战队事故的经济成本 8 图 1.7 商用喷气式飞机事故数量、事故率和交通量增长 – 过去、现在和未来 9 图 1.8 与人为错误相关的海军航空事故率与仅归因于机械或环境因素的事故率 11 图 1.9 工程调查和预防过程 13 图 1.10 人为错误过程循环 17 图 2.1 信息处理的基本模型 21 图 2.2 决策模型 22 图2.3 评估机组失误的分类框架 24 图 2.4 SHEL 模型 27 图 2.5 事故成因模型。成功完成任务(顶部);未成功完成任务(底部) 29 图 2.6 Peterson 的动机、奖励和满意度模型 31 图 2.7 事故成因的流行病学模型 33 图 2.8 影响机组失误的社会因素 35 图 2.9 事故成因的多米诺骨牌理论 38 图 2.10 驾驶舱操作的四个“P” 41 图 3.1 生产系统的组成部分 46 图 3.2 事故成因的“瑞士奶酪”模型 47 图 3.3 机组人员实施的不安全行为的类别 51 图 3.4 不安全行为的先决条件类别 56
签名:________Isaac Morrison_________________________ 批准:_______________________________________ 日期 ________________________ Benjamin J. Laugelli,工程与社会系助理教授