摘要。动态治疗方案(DTR)是一种提供精确药物的方法,该方法使用患者特征来指导治疗方法以实现最佳健康结果。已经提出了许多用于DTR估计的方法,包括动态加权的普通最小二乘(DWOLS),这是一种基于回归的方法,在易于实现的分析框架内具有双重鲁棒性来模拟模型错误指定。最初,DWOL方法是在连续结果和二元治疗决策的假设下开发的。是在临床研究的激励下,随后的理论进步扩大了DWOLS框架,以解决各种结果类型的二元,连续和多酸性处理,包括二进制,连续和生存类型。但是,某些方案仍未开发。本文总结了DWOLS方法的扩展和应用的最后十年,对原始DWOLS方法及其扩展进行了全面而详细的审查,并突出了其多样化的实际应用。我们还探讨了已经解决了与DWOL实施相关的挑战的研究,例如模型验证,可变选择和处理测量错误。使用模拟数据,我们提出了数值插图以及在R环境中的分步实现,以促进对基于DWOL的DTR估计方法的更深入的了解。
多年来,抑制最小二乘(DLS)算法一直是优化操作系统的选择方法。dls需要评估雅各布的优化操作数,这通常由fi-nite di ff herences进行。尽管有限差异方法的简单性具有一些主要的缺点,即对许多功能评估的需求及其有限的稳定性和精度。作为一种替代算法二元(AD)[1],已在包括镜头设计在内的许多学科中使用[2],通常被称为Di ff构成射线跟踪,主要用于端到端设计的上下文[3]。AD的基本思想是用链条规则来描述可以通过链条来划分的优化操作数的组合。取决于应用链条规则的方向,该方法称为AD向前模式或AD反向模式。在此贡献中,我们提出了一种方法,可以在前和重复模式下使用AD稳定地计算Jacobian。这使我们可以使用伪牛顿方法,例如DLS,而不是基于一阶梯度的甲基ODS进行优化。用于射线表面相交的分化的数学分析可以实现性能。对于具有许多优化参数的自由式设计,这证明了这一点,因为已知这些系统特别具有挑战性[4]。
摘要。我们研究了形状约束(SC)的添加及其在符号识别步骤(SR)的参数识别步骤中的考虑。sc是一种将有关未知模型函数形状的先验知识引入SR的手段。与以前在SR中探索过SC的工作不同,我们建议在使用基于梯度的NU-MERIMILICE优化的参数识别期间最大程度地减少SC违规行为。我们测试了三种算法变体,以评估其在识别合成生成数据集的三个符号表达式时的性能。本文研究了两种基准方案:一个具有不同噪声水平的基准,另一个具有不同的培训数据。结果表明,当数据稀缺时,将SC纳入表达搜索特别有益。与仅在选择过程中使用SC相比,我们在参数识别期间最小化违规行为的方法在我们的某些测试用例中显示出具有统计学意义的好处,在任何情况下都没有明显更糟。
碳排放对环境的影响使得一些可持续发展目标难以实现。尽管国际机构做出了努力,但由于转型尚未完成,仍然需要解决这个问题。因此,本研究调查了 1998 年至 2021 年期间全球化、经济增长、金融包容性、可再生能源和政府机构对碳排放的影响。为了能够评估变量的直接和间接影响,采用了偏最小二乘结构方程模型,其中可再生能源作为中介,并采用两阶段最小二乘法进行稳健性检验。研究结果表明,全球化促进了可再生能源的使用,但金融包容性对可再生能源的使用有负面影响。可再生能源对碳排放有直接的积极和显著影响。金融包容性对碳排放有间接的负面和显著影响。结果表明,更多的金融包容性启蒙将有助于平稳过渡,并且应该在执行所有环境法规的前提下接受全球化。
作者:Nakaji, Tatsuro;小熊,弘之;中村正宏;帕尼达姐妹;希望,路;马罗德,多克拉克;相叶正宏;黑川,弘子;小杉,Y;卡西姆,阿卜杜勒·拉赫曼;日浦津
1 水文地质学、自然资源评估系、环境研究与研究所、萨达特城大学、梅努菲亚 32897、埃及 2 环境地质学、环境系统自然资源测量系、环境研究与研究所、萨达特城大学、梅努菲亚 32897、埃及;ali.saleh@esri.usc.edu.eg 3 地质学系、理学院、达曼胡尔大学、达曼胡尔 22511、埃及;hendhussein@sci.dmu.edu.eg 4 农业工程、自然资源评估系、环境研究与研究所、萨达特城大学、梅努菲亚 32897、埃及 5 农业工程、环境系统自然资源测量系、环境研究与研究所、萨达特城大学、梅努菲亚 32897、埃及; farouk@esri.usc.edu.eg * 通讯地址:mohamed.gad@esri.usc.edu.eg (M.G.); salah.emam@esri.usc.edu.eg (S.E.)
摘要:人工智能 (AI) 和认知计算 (CC) 是不同的,这就是为什么每种技术都有其优点和缺点,这取决于企业想要优化的任务/操作。如今,只需将 CC 与 AI 的广泛主题联系起来,就很容易混淆两者。这样,想要实施 AI 的公司就知道,在大多数情况下,他们想要的是 CC 提供的功能。在这些情况下,知道如何区分它们很重要,这样就可以确定在哪种情况下一种比另一种更合适,从而更多地利用每种技术提供的优势。该项目专注于突出这两种技术的能力,更具体地说是在智能系统实施和公司对它们的兴趣有利的商业环境中。它还确定了这些技术的哪些方面对公司最有吸引力。根据这些信息,评估这些方面是否与决策相关。数据分析是通过采用偏最小二乘结构方程模型 (PLS-SEM) 和描述性统计技术进行的。
摘要典型相关分析 (CCA) 和偏最小二乘 (PLS) 是用于捕捉两种数据模态(例如大脑和行为)之间关联的强大多元方法。然而,当样本量类似于或小于数据中的变量数量时,标准 CCA 和 PLS 模型可能会过度拟合,即发现无法很好地推广到新数据的虚假关联。已经提出了 CCA 和 PLS 的降维和正则化扩展来解决此问题,但大多数使用这些方法的研究都有一些局限性。这项工作对最常见的 CCA/PLS 模型及其正则化变体进行了理论和实践介绍。我们研究了当样本量类似于或小于变量数量时标准 CCA 和 PLS 的局限性。我们讨论了降维和正则化技术如何解决这个问题,并解释了它们的主要优点和缺点。我们重点介绍了 CCA/PLS 分析框架的关键方面,包括优化模型的超参数和测试已识别的关联是否具有统计意义。我们将所描述的 CCA/PLS 模型应用于来自人类连接组计划和阿尔茨海默病神经成像计划的模拟数据和真实数据(n 均为 .500)。我们使用这些数据的低维和高维版本(即样本大小与变量之间的比率分别在 w 1 – 10 和 w 0.1 – 0.01 范围内)来展示数据维数对模型的影响。最后,我们总结了本教程的关键课程。
摘要我们基于随机子空间内的迭代最小化,为基于大规模模型的无衍生衍生型选择引入了一个通用框架。我们为我们的方法提供了概率的最差复杂性分析,特别是我们在实现给定最佳性之前证明了迭代次数的高概率界限。该框架专门针对非线性最小二乘问题,该框架具有基于高斯– Newton方法的基于模型的框架。此方法通过构造本地线性插值模型来近似Jacobian,从而实现可扩展性,并在每个迭代中计算具有用户确定的维度的每个迭代的新步骤。然后,我们描述了该框架的实际实现,我们称之为dfbgn。我们概述了选择插值点和搜索子空间的有效技术,得出的实现了,该实现的每卷线性代数成本(在问题维度为线性),同时还可以通过评估来衡量,同时还可以实现快速客观的降低。广泛的数值结果表明,DFBGN提高了可伸缩性,在大规模的非线性最小二乘问题上产生了强劲的性能。
摘要:计算机技术的最新开发可能导致量子图像算法成为热点。量子信息和计算给出了我们的量子图像算法的一些优势,这些算法处理了原始经典图像算法无法解决的有限问题。图像处理为量子图像的应用而哭泣。量子图像上的大多数作品都是理论上的,有时甚至是未抛光的,尽管量子计算机中的现实世界实验已经开始并正在繁殖。但是,正如计算机技术的开发有助于推动技术革命一样,从量子力学,量子信息和极其强大的计算机上提出了一种新的量子图像算法。引入了量子图像表示模型来构建图像模型,然后将其用于图像处理。为了重建或估计点扩散函数,采用了先验知识,并根据相反的处理获得非分类估计。使用最佳的平滑度度量来解决噪声的模糊功能。在约束条件上,确定最小标准函数并估计原始图像函数。对于某些运动模糊和某些噪声污染(例如高斯声音),所提出的算法能够产生更好的恢复结果。另外,应该注意的是,当存在噪声强度非常低的噪声攻击时,基于约束最小二乘过滤的模型仍然可以带来良好的恢复结果,并且具有很强的鲁棒性。随后,讨论实现量子电路和图像过滤的复杂性的仿真分析,并证明当噪声密度较小时,该算法对模糊恢复具有良好的影响。