1植物保护学院,河南农业大学,郑州450046,中国2海洋学院,山东大学,山峰大学,魏哈伊264209,中国3植物多样性与系统学中心,植物学研究所,江苏省和中国科学院,中国科学院,中国科学学院, 450046,中国5深圳分公司,林南现代农业实验室,合成生物学的主要实验室,农业与农村事务部实验室,农业基因组学研究所,深圳农业科学院,农业科学院,农业科学院570228,中国 *相应的作者,电子邮件:whwcas@163.com; jiamei_li@126.com; 5220130045@fafu.edu.cn
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
Murukarthick Jayakodi 1,26,Agnieszka A. Golicz 2,26,Jonathan Kreplak 3,26,Lavinia I. Fechete 4,Deepti Angra 5,PetrBedná病6,Elesandro Bornhofen 7 Heidrun Gundlach 10,Asis Hallab 11,12,Baptiste Imbert 3,Gabriel Keeble-Gagnère8,AndreaKoblížková13,LucieKobrlová14,PetraKrejčí6,Troels W. Mouritzen 4,Povel nove nove nove Noves Noves Nove Nove Noves Nave nave nave nave nave nave ,圣战奥拉比16,苏达尔·帕德玛拉苏1,汤姆·罗伯逊·希尔斯比 - 哈维5,劳拉·阿维拉·罗布雷洛13,安德里亚·史曼16,贾克科·坦斯科宁17,彼得里·托恩,佩特里·托恩, Uel Courty 3,JaroslavDoležel9,Liisa U. Holm 18,Luc L. Janss 7,Hamid Khazaei 17,Ji场ÖrnUsadel 11,25,Ingo Schubert 1,Donal Martin O'Sullivan 5✉,Alan H. Schulman 17,18,23✉&StigUggerhøjAndersen 4✉
菊花含量,东亚本地的一种物种众所周知,是耕种的菊花的祖细胞之一,该物种以其观念和药用价值而生长。先前关于菊花的基因组研究在分析该植物谱系时,很大程度上忽略了质体基因组(质体)和线粒体基因组(有丝分裂基因组)的动力学。在这项研究中,我们测序并组装了二倍体和四倍体C的质体和有丝分裂组。芳香。我们使用了来自27种具有质体和有丝分裂组完整序列的数据,以探索细胞器基因组之间序列演化的差异。二倍体和四倍体C中的细胞器基因组的大小和结构通常相似,但四倍体C. indimum和C. indimum var。芳香族在有丝分裂组中包含独特的序列,这些序列还包含先前未描述的开放式阅读框(ORF)。跨菊花有丝分裂组的结构变化很大,但是从质体转移到有丝分裂基因组的序列得到了保存。最后,有丝分裂基因组和质子基因树之间观察到的差异可能是这两个基因组中基因之间序列演化速率差异的结果。总共提出的发现大大扩展了研究菊花细胞器基因组进化的资源,并可能在将来可以应用于保护,育种和基因库。
最近从国家医学产品管理局获得了该组开发的人类二倍体狂犬病疫苗的临床试验批准。该产品作为一种迭代升级的人二倍体狂犬病疫苗,具有超高效率的特征,并且标志着全球狂犬病疫苗行业的技术迭代升级。动物测试的结果表明,该组的人类二倍体狂犬病疫苗会触发高水平的抗体,这些抗体在免疫后提供了足够的保护。在同一剂量下,该集团人类二倍体狂犬病疫苗的效力显着高于那些销售的人二倍体狂犬病疫苗。
1)单倍体圆形染色体菌株在富含营养培养基上的相反交配类型的单倍体野生型菌株配对。然后,通过在选择性培养基上生长二倍体子细胞。2)然后将二倍体通过转移到饥饿的Me di a来散发。二倍体母体菌株减数分裂是产生的单倍体产物。TETRA DS。3)单倍体细胞的生存能力通过营养素生长
在本报告中,我们介绍了使用Forcastree(用于模拟森林和农产品树的生长和碳的模型)的四种基于四树的实践的预测的结果:一种树木的生长和互动模型,以前被称为Sexi-Fs(由空间基于个体的森林模拟器),由World agroforeStry(ICRA)开发。这四种基于树的实践结合了快速和缓慢的生长,天然和异国的树种:(1)不同二翼型物种的混合物,(2)天然和异国情调的非二倍体物种,(3)杂果,果树,果树和可可,以及(4)二倍体,非二倍体,非二生酸性树种。每种练习都考虑了树木死亡率(或没有死亡率)和树密度(每公顷400或1100棵树)的情况。
对最近的人类基因组组装的比较分析突出了显著的序列差异,这种差异在着丝粒等多态性位点内达到顶峰。这引发了一个问题,即依赖人类参考基因组来准确分析来自实验细胞系的测序数据是否合适。在这里,我们提出了一种称为“同基因组参考”的新方法,该方法利用匹配的参考基因组进行多组学分析。我们为人类视网膜上皮细胞 (RPE-1) 生成了一个新的二倍体基因组组装,RPE-1 是一种广泛使用的非癌症实验室细胞系,具有稳定的二倍体核型,呈现出完全跨越着丝粒的分阶段单倍型和染色体水平支架。利用该组装体,我们表征了 RPE- 1 独有的单倍型解析基因组变异,包括一个稳定的标记染色体 X,其中 73.18 Mb 的 10 号染色体片段重复易位至该细胞系特有的微缺失端粒 t(X q ;10 q )。比较分析揭示了着丝粒区域内的序列多态性,包括所有染色体单倍型之间的意外遗传和表观遗传多样性。使用我们的组装体作为参考,我们重新分析了我们自己的和公开的 RPE-1 中生成的测序、甲基化和表观遗传数据,这些数据之前已使用非匹配和非二倍体参考基因组进行分析。我们的结果表明,同基因组参考可改善比对,将映射质量提高高达 85%,同时将错配减少一半,从而导致与着丝粒相关的峰调用发生显著变化。我们的工作代表了一个概念验证,展示了匹配的参考基因组在多组学分析中的应用,并在规模上为全面组装实验相关细胞系以广泛应用同基因组参考基因组奠定了基础。关键词:人类参考;二倍体基因组;从头组装;基因组参考;着丝粒组装;实验室细胞系;多组学分析;表观遗传学;人类多态性;实验细胞系;同基因组参考。
掩盖理论指出,单倍体阶段表达的基因将在更有效的选择下。在con trast中,选择在二倍体阶段表达的基因中的效率较低,在二倍体阶段,隐性有害或有益突变的适应性可能以杂合形式隐藏。这种差异可以在流动性中几个进化过程,例如维持遗传变异,适应率和遗传负荷。掩盖理论期望已在单细胞单倍体和二倍体生物中得到证实。然而,在多细胞生物(例如植物)中,单倍体选择的作用并不明确。在植物中,已经使用血管中的雄性单倍体组织进行了大量选择的研究。因此,这些系统中的证据与性选择和种内竞争的影响相混淆。其他植物群的证据很少,结果没有对掩盖理论的支持。在这里,我们使用了裸子苏格兰松树巨型植物学,母体衍生的种子单倍体组织和四个二倍体Tis SU来测试在具有组织特异性表达的一组基因上纯化选择的强度。通过使用这些基因的靶向重新定位数据,我们获得了遗传多样性,0倍和4倍位点的位点频谱的估计值,并推断了单倍体组织和二倍体组织 - 特异性基因中新突变的适应性效应的分布。我们的结果表明,在单倍体巨脂组织组织中表达的组织特异性基因纯化选择更强,并且这种强选择的信号不是由高表达水平驱动的伪像。
b淋巴细胞性白血病/淋巴瘤,复发性细胞遗传学异常:•t(9; 22)•与t(v; 11q23)•t(12; 11; 21)•与高二倍体(12; 21)•具有高二倍体(超过50个染色体)•与低dipo虫(小于50个染色体)(小于50个染色体)•与Timosomes•14•(14)•(14)•(5;)•(5;)•;;;;;;;; 14;