在此,采用基于工业溶剂分馏的 LignoBoost 牛皮纸木质素 (KL) 的二元阴极界面层 (CIL) 策略来制造有机太阳能电池 (OSC)。KL 中均匀分布的苯酚部分使其能够与常用的 CIL 材料(即浴铜灵 (BCP) 和 PFN-Br)轻松形成氢键,从而产生具有可调功函数 (WF) 的二元 CIL。这项工作表明,二元 CIL 在具有大 KL 比兼容性的 OSC 中工作良好,在最先进的 OSC 中表现出与传统 CIL 相当甚至更高的效率。此外,由于 KL 阻断了 BCP 和非富勒烯受体 (NFA) 之间的反应,KL 和 BCP 的组合显著提高了 OSC 的稳定性。这项工作提供了一种简单有效的方法,通过使用木质材料实现具有更好稳定性和可持续性的高效 OSC。
tohoku大学中子辐射硬化和在核反应器压力容器钢的硬化层中的层次和低激活的铁质钢,并阐明在低温中子中的辐射层中,观察到过度辐照机制的过度辐射层的层压层和反应型均质的层次不足[ ation铁素钢和在低温中子二进制合金中观察到的过度辐射硬化的机制
CisSig 评分 IC50(连续)简单线性回归全部相关系数 0.51 CisSig 评分 IC50(连续)简单线性回归五分位数相关系数 0.74 所有基因表达 IC50(连续)弹性网线性回归全部相关系数 0.63 所有基因表达 IC50(连续)弹性网线性回归五分位数相关系数 0.79 所有基因表达 IC50(连续)L1 线性回归全部相关系数 0.63 所有基因表达 IC50(连续)L1 线性回归五分位数相关系数 0.79 所有基因表达 IC50(连续)L2 线性回归全部相关系数 0.63 所有基因表达 IC50(连续)L2 线性回归五分位数相关系数0.81 所有基因表达 IC50(二元)简单逻辑回归所有 AUC 0.79 所有基因表达 IC50(二元)简单逻辑回归五分位数 AUC 0.90 所有基因表达 IC50(二元)弹性网络逻辑回归所有 AUC 0.82 所有基因表达 IC50(二元)弹性网络逻辑回归五分位数 AUC 0.94 所有基因表达 IC50(二元)L1 逻辑回归所有 AUC 0.82 所有基因表达 IC50(二元)L1 逻辑回归五分位数 AUC 0.94 所有基因表达 IC50(二元)L2 逻辑回归所有 AUC 0.81 所有基因表达 IC50(二元)L2 逻辑回归五分位数 AUC 0.95 所有基因表达 IC50(二元)SVM(线性核)所有 AUC 0.82 所有基因表达 IC50(二元) SVM(线性核)五分位数 AUC 0.93 所有基因表达 IC50(二元)SVM(多项式核)所有 AUC 0.78 所有基因表达 IC50(二元)SVM(多项式核)五分位数 AUC 0.94 所有基因表达 IC50(二元)随机森林所有 AUC 0.81 所有基因表达 IC50(二元)随机森林五分位数 AUC 0.91
III-V 半导体带隙性质和大小的改变对于光电应用具有重要意义。应变可用于系统地在很宽的范围内调整带隙,并引起间接到直接 (IDT)、直接到间接 (DIT) 和其他带隙性质的变化。在这里,我们建立了一种基于密度泛函理论的预测从头算方法来分析单轴、双轴和各向同性应变对带隙的影响。我们表明系统性变化是可能的。对于 GaAs,在 1.52% 各向同性压缩应变和 3.52% 拉伸应变下观察到 DIT,而对于 GaP,在 2.63 各向同性拉伸应变下发现 IDT。我们还提出了一种通过将双轴应变与单轴应变相结合来实现直接-间接转变的策略。确定了应变 GaSb、InP、InAs 和 InSb 的进一步转变点,并与元素半导体硅进行了比较。因此,我们的分析为二元 III-V 半导体中的应变诱导带隙调整提供了一种系统且可预测的方法。
人口普查中有一个独特的“非二元”个体类别。2021 年,0.33% 的加拿大人至少认定自己具有一种非二元身份。由于这个相对较小的群体,进一步进行分类研究具有挑战性,因为已经处于边缘地位的受访者的身份被泄露的风险很高。因此,加拿大统计局为分析而开发的一种标准分析工具不主要关注性别,它包括将非二元个体随机分配到分析子群体中,分为男性和女性,从而创建“男性+”(包括男性和一半非二元人士的性别类别)和“女性+”(包括女性和一半非二元人士的性别类别)类别。这里需要注意的是,分配是完全随机的,不应暗示判断特定的非二元个体是“男性更多”还是“女性更多”,后者是贬义的概念。
这项研究旨在开发一种基于形态学的模型,以预测聚合物与相分离结构的聚合物混合物的模量和拉伸强度。分析模型采用了打结和互连的骨骼结构(KISS)模型的几何方法,结合了不混合聚合物混合物的形态变化和组件的渗透阈值。通过假设各个形态态的特定厚度的薄界面层,可以解释聚合物/聚合物界面对机械性能的影响。使用IPP/PA,PP/PET和LDPE/PP聚合物混合物的实验数据评估了所提出的模型的预测能力,这些数据来自现有文献。结果在预测数据和观察到的数据之间建立了合理的规定。该模型的预测也与已建立的抗拉强度和杨氏混合物混合物模量的模型的预测进行了比较,这表明了其有效性。将界面区域纳入机械性能的建模过程中代表了所提出的模型的关键区别特征,从而增强了其与聚合物混合物的实际微结构的兼容性。此外,该模型对相对简单的数学计算的依赖提出了另一个关键优势。
摘要:高κ电介质是介电常数高于二氧化硅的绝缘材料。这些材料已经在微电子领域得到应用,主要用作硅 (Si) 技术的栅极绝缘体或钝化层。然而,自过去十年以来,随着宽带隙 (WBG) 半导体的广泛引入,如碳化硅 (SiC) 和氮化镓 (GaN),后硅时代开始了,这为高κ材料在这些新兴技术中的应用开辟了新的前景。在此背景下,铝和铪的氧化物(即 Al 2 O 3 、HfO 2 )和一些稀土氧化物(例如 CeO 2 、Gd 2 O 3 、Sc 2 O 3 )是有前途的高κ二元氧化物,可用作基于 SiC 和 GaN 的下一代大功率和高频晶体管的栅极介电层。本综述论文概述了用于后硅电子器件的高介电常数二元氧化物薄膜。特别地,重点关注通过原子层沉积在 WBG 半导体(碳化硅和氮化镓)上生长的高 κ 二元氧化物,无论是非晶态还是晶体膜。讨论了沉积模式和沉积前或沉积后处理的影响。此外,还介绍了这些薄膜的介电行为,并报告了一些应用于 SiC 和 GaN 晶体管的高 κ 二元氧化物的示例。强调了这些技术的潜在优势和当前的局限性。
太阳能电池。[2–9] 通常,会开发出由共价连接的富电子给体 (D) 和缺电子受体 (A) 单元组成的聚合物或低聚物材料。在大多数例子中,D 和 A 通过对应于分子本体异质结模型的不同长度的柔性绝缘接头连接,而只有少数具有刚性 π 共轭接头或直接连接。[1] 在双极性 D-A 聚合物中,结构具有挑战性、合成复杂性高的“双电缆”聚合物 [2–5] 最近在 SMOSC 中显示出显著提高的能量转换效率 (PCE) 超过 8.4%。在这些材料中,D 和 A 单元的层状相分离通常在较高温度(高达 230°C)下实现,从而产生具有高热稳定性和光稳定性的太阳能电池。 [1c,3–5] 目前,这些结果已经被随机D-A嵌段共聚物[6–8]所超越,其PCE达到了8.6% [7],甚至有望达到11.3% [8],达到了工业应用的10%技术壁垒。[1c,10]
本论文由艺术与社会科学研究生院 (GSASS) 在 DigitalCommons@Lesley 提供,免费开放获取。该论文已被 DigitalCommons@Lesley 的授权管理员接收,并被收录至表达疗法顶点论文。如需了解更多信息,请联系 digitalcommons@lesley.edu 或 cvrattos@lesley.edu。