摘要 :21 世纪的各种社会经济危机表明,传统经济学和(新)古典主义思维无法解释当前经济问题的所有复杂性,因此,更复杂、更非平凡的经济概念的应用越来越重要。除了行为和进化经济思维外,近年来还开发了量子经济学模型,这些模型主要使用量子思维和量子物理原理来解决经济问题,特别是粒子波二元论、不确定性原理、主客体无区别、叠加和混淆。本文探讨了 3 个研究问题 (RQ)。根据 RQ1,本文发现量子经济学研究主要由以下主题组成:量子经济学、量子金融、量子决策和量子博弈论。根据这四个主题描述,本文对 1978 年至 2022 年期间的科学著作进行了系统的现代回顾(如果 1978-1999 年只发表了 50 部著作,那么 2000-2022 年已经有 3430 部),重点关注被引用次数最多的英文期刊文章(Google Scholar)。分析表明,关于该主题的文章主要发表在非经济期刊上,出版活动的高峰发生在社会经济剧烈动荡时期(例如,互联网泡沫、次级/金融危机、欧洲债务危机、冠状病毒大流行等)。根据问题2,本文定义了量子经济模型的主要特征:与新古典经济学(基于机械的古典物理学,是理性的和确定性的,借助市场这只看不见的手达到稳定的均衡)相反,量子方法认为经济更复杂、经验导向、不确定、概率性、叠加性,是量子社会系统的原型,具有自己的二元性、测量和纠缠版本。根据问题3,本文确定量子经济学在多大程度上可以更新(新)古典经济学(将新的本体论前提融入经济思维、更具实验性和实践性的方法、纠缠概念与可持续发展之间的联系、基于量子概率概念的金融风险管理、通过量子概率重新思考随机性概念、引入量子货币、使用量子游戏实现均衡等)。
量子物理学将我们对小世界的理解倒闭,就像拼图插入到位一样。出生于20世纪初期的突破,这项激进科学有助于我们掌握原子和亚原子尺度上发生的事情。它的思维弯曲原则吹走了古典思想和催生的创新,具有深厚的哲学意义。一个关键概念是波颗粒二元性:像电子这样的粒子可以是波和粒子。这种怪异是由阿尔伯特·爱因斯坦(Albert Einstein)弄清楚Light的粒子侧时首先发现的,而Louis de Broglie则表明,即使颗粒也可以像波浪一样行为。这模糊了粒子和量子水平的波之间的界线。量化是另一个至关重要的想法 - 某些物理价值(例如能量)仅在离散的块中。Max Planck首先提出了这个概念,当他通过建议能量出现在称为Quanta的数据包中,从而解决了黑体辐射问题。后来,Niels Bohr将其应用于原子,显示了电子如何在特定能级之间跳跃。海森伯格不确定性原则指出,我们不知道两种属性,例如位置和动力,同时具有无限的精度。这种破坏了古典的决定论,将固有的不确定性引入量子世界。这就像试图查明超速弹 - 您可以接近,但永远不会钉住它。最后,叠加让量子系统一次在多个状态下,直到我们对其进行测量。想象一下同时在两个地方做两件事!这种基本财产支撑着许多量子物理学对现实最令人惊讶的主张。(注意:原始文本是用偶尔的拼写错误重写以遵守指定概率的。)物理学家对微小颗粒在量子水平上的行为着迷,在量子水平上,发生了奇怪的现象和隧道的发生。量子力学表明这些颗粒存在于多个状态,直到观察到,并且测量行为本身会影响其性质。这是通过诸如双缝测试之类的实验证明的,在观察时粒子的行为不同。量子场理论试图在一个框架内统一所有基本力量,从而揭示了物质和能量之间的复杂舞蹈。**纠缠**纠缠是一种奇怪的现象,其中颗粒被连接起来,在巨大的距离上瞬间相互影响。这违反了时空的经典思想,并被称为“远处的怪异动作”。纠缠粒子用于加密和计算等量子技术,从而提出了有关信息传输限制的深刻问题。**观察者效应**观察者效应突出了观察与现实之间的相互作用。在实验中,当观察到与未观察到的,具有挑战性的经典观念时,粒子的行为可能会有所不同,即现实独立于测量。量子力学表明,观察行为本身在塑造量子系统的性质中起作用。**量子隧道**量子隧道允许粒子穿过由于波浪状的行为而在经典上是无法克服的障碍。这种现象是许多物理过程和技术(包括核融合和电子设备)的基础。**互补原理**互补原理指出,量子实体具有双重特性 - 例如波浪状和粒子样行为 - 无法同时观察到。这个概念调解了量子力学中明显的矛盾,强调了对多种观点完全理解量子现实的需求。**量子场理论**量子场理论将量子力学扩展到场,提供了描述自然基本力量的统一框架。通过探索物理和能量之间的复杂舞蹈,物理学家继续揭开量子世界的奥秘。量子场理论(QFT)是基于粒子物理学标准模型的理论框架,从基础领域的粒子行为提供了全面的解释。QFT揭示了这些场的激发粒子是如何通过交换携带力的粒子(例如电磁力的光子)和强核力量的振动而相互相互作用的。通过众多实验,QFT已实现了已得到广泛确认的精确预测。量子力学的原理,包括波粒二元性,能量的量化和不确定性原理,构成了现代物理的基础。对量子物理学的这种基本理解重塑了我们对微观世界的理解,揭示了一种以深远的相互联系,概率和丰富现象为特征的现实,这些现象挑战了古典直觉。这些概念驱动了技术创新,例如半导体,激光器和量子计算机。对量子力学的持续研究继续推出对宇宙基本本质的新见解,既推动了科学进步又推动哲学探究。探索量子原则不仅加深了我们对物理定律的理解,而且还扩大了人类的知识和技术能力。本课程是本科量子物理序列的第一部分,引入了量子力学的基本原理。它涵盖了一维和三维设置中量子物理学,波浪力学和Schrödinger方程的实验基础。材料探索了诸如潜在井,谐振传播,散射和中心电位之类的主题。本课程基于Zwiebach的教科书“掌握量子力学”(2022),该课程对该主题提供了全面的处理。演讲与亚当斯课程(2013)的覆盖深度和关注特定主题的不同之处。两个课程涵盖了类似的材料,但它们具有不同的观点和问题集。注意:我应用了“写为非母语说话者(NNE)”的重写方法来维持原始含义和音调,同时将语言调整为非本地人英语说话者的水平。
常识与精神分裂症之间的哲学关系自然地体现在约翰·纳什 (1928 – 2015) 的个性和创造力中,他曾获得诺贝尔经济学奖 (1994),被诊断患有偏执型精神分裂症 (1959)。他的一个基本思想是对博弈论和数学哲学中均衡的新解释,认为均衡在非合作博弈中是非竞争性的,甚至是防止博弈者或因素之间任何竞争的一种方式。这与数学博弈论及其在经济学中的应用的创始人之一约翰·冯·诺依曼的观点截然相反。纳什的几篇早期论文 (1950;1950a;1951) 证明了诺依曼方法的推广 (Park, 2011) (Neumann, Morgenstern, 1953; Israel & Gasca, 2009; Nash et al., 1996)。 “纳什均衡”的可引用性呈指数级增长(Mccain 和 Mccain,2010 年)。纳什获得了诺贝尔经济学奖(Milnor,1995 年)。纳什均衡的本质在于,目标在参与者之间分离地分配,从而实现更稳定的均衡(Marsili 和 Zhang,1997 年)。相反,他们与诺伊曼方法中的目标相同,即始终处于直接竞争状态,导致不稳定和瓦解趋势。纳什均衡可以看作是“战略性的”(Crawford,2002 年)。对于为了获利而采用所有其他策略的博弈者来说,预防竞争对手是最好的策略。如果所有博弈者都采用这些策略,那么他们就会处于稳定状态,即纳什均衡。相反,诺伊曼方法中的博弈者忽略了其他人的策略,因此只针对同一个目标。因此,在纳什方法中,所有博弈者的集体收益要大得多,但在诺伊曼方法中,单个赢家的个人收益更大。此外,纳什博弈者应该具有了解或预测所有其他人的策略的能力。如果博弈者是人类,就像经济模型中那样,这是自然而然的。然而,如果他们不是,诺伊曼方法似乎更有意义。然而,所有热力学方法,包括被视为一种特殊广义热力学理论的量子力学,都承认纳什均衡的选择,尽管代理没有意识,可能不“知道”或“意味着”其他人的策略。统计热力学中的必要条件是代理和整体的二元性,即所有代理的系统,只要系统存在,就应该处于平衡状态。我们可以得出结论,如果假设任何集合是一个系统,那么纳什均衡就适用于描述它。相反,如果它是一个随机集合,作为一个整体存在,偶尔会被破坏或随时重新配置,那么诺伊曼方法似乎是相关的。
摘要:人工智能(AI)可以减少和增加公司的碳足迹。本研究探讨了这种复杂的关系。AI技术可用于抵抗气候变化,但是训练这些模型可以消耗大量能量。在这里,我们将AI和碳排放视为互连系统。我们分析了六个机器学习模型,并计算了其碳足迹。我们的目标是促进“可持续AI”,在整个开发过程中,从数据收集到使用模型,都考虑了环境责任。通过倡导可持续实践,我们鼓励创建也是环保的有效AI。关键字:可持续AI,机器学习,碳排放,能源效率,绿色AI,深度学习1。引言人工智能(AI)正在彻底改变我们的世界,其对环境的影响是一个复杂的问题,需要我们注意。AI通过在资源管理和环境监控方面的进步提供了希望可持续性的灯塔,但它也带来了隐藏的负担:碳排放的产生。训练和运行复杂的AI模型所需的巨大能量是为了给我们的星球带来的。这项研究解决了这种批判性二元性。早期的研究通常集中在AI的积极环境贡献上。我们旨在通过探索AI技术的积极和消极的环境后果来提供更全面的理解。关键重点是找到创建较低碳足迹的机器学习模型。为了实现整体观点,我们将采用系统系统(SOS)方法。该框架将AI和碳排放视为较大系统的相互连接部分。通过分析这些互动,我们可以制定策略以使AI实践更可持续。本研究提出了一个实现这一目标的框架,最终为AI帮助我们实现环境可持续性的未来铺平了道路,而不会损害我们地球的健康。此外,我们认为面对气候变化,考虑AI研究的道德意义至关重要。研究人员不仅应争取模型的准确性,而且还应考虑与开发相关的能源成本。通过将这些考虑因素纳入研究实践,我们可以确保AI成为环境进步的负责任工具。深度学习的高能源成本和对可持续实践深度学习(DL)算法的需求是具有广泛应用的强大工具,但是它们的培训过程以环境成本为基础。训练这些复杂模型需要大量的计算能力,这转化为大量能源消耗。这种高能量需求导致大量的二氧化碳,主要气候
1量子物理学的起源1 1.1历史注释。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 1.2辐射的粒子方面。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.2.1黑体辐射。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.2.2光电效应。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>10 1.2.3 Componton效应。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13 1.2.4对。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16 1.3颗粒的波动。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 1.3.1 Broglie的假设:物质波。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 1.3.2 De Broglie假设的实验确认。。。。。。。。18 1.3.3宏观物体的物质波。。。。。。。。。。。。。。。。。20 1.4粒子与波。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 1.4.1颗粒和波的经典视图。。。。。。。。。。。。。。。。。。22 1.4.2颗粒和波的量子视图。。。。。。。。。。。。。。。。。。23 1.4.3波粒二元性:互补性。。。。。。。。。。。。。。。。26 1.4.4线性叠加原理。。。。。。。。。。。。。。。。。。。。27 1.5微物理世界的不确定性。。。。。。。。。。。。。。。27 1.5.1海森伯格的不确定性原则。。。。。。。。。。。。。。。。。。。28 1.5.2概率解释。。。。。。。。。。。。。。。。。。。。。。。。30 1.6原子过渡和光谱法。。。。。。。。。。。。。。。。。。。。。。30 1.6.1原子的卢瑟福行星模型。。。。。。。。。。。。。。。。30 1.6.2氢原子的BOHR模型。。。。。。。。。。。。。。。。。。。31 1.7量化规则。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。36 1.8波数据包。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 1.8.1局部波数据包。。。。。。。。。。。。。。。。。。。。。。。。。39 1.8.2波数据包和不确定性关系。。。。。。。。。。。。。。。42 1.8.3波数据包的运动。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 43 1.9总结。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 54 1.10解决问题。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。42 1.8.3波数据包的运动。。。。。。。。。。。。。。。。。。。。。。。。。43 1.9总结。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。54 1.10解决问题。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>54 1.11练习。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>71 div>
随着第四届 Drones Beyond 的举办,我们再次见证了无人机技术的开发和使用、已在市场上运营的公司数量和准备这样做的公司数量、公共行政部门的兴趣、关注和作用、公民日益知情的参与以及我们的社区的持续增长。它由众多合作伙伴组成,在过去的几年里,我们与这些合作伙伴在巴里开放创新中心 (Casa delle Technologie - CTE) 倡议中找到了合作,因此在 Drones Beyond 中,我们找到了分享知识和经验的机会、验证一年来取得的成果的机会以及迎接新挑战的机会。自设计阶段以来,CTE 计划就按照巴里市测试范围和格罗塔列机场试验台之间的整合逻辑进行。这使得在 CTE 中创建的设计和活动可以放置在格罗塔列机场试验台等城外测试环境中。 2024 年的重点是进一步提高飞行演示的复杂程度,这些演示依赖于可以同时进行的共同空域的管理。在这一版本中,无人机系统和有人驾驶飞机、合作和非合作无人机系统集成在一个领土空域中运行。飞机探测系统提供引导服务,可集成到机场或飞机场/直升机停机坪,UTM 将支持控制中心的协调。大型演示的这一进步是 CTE 发起的活动和合作的结果,并向新的伙伴关系和新的技术挑战开放,这些伙伴关系和挑战在 Grottaglie 空域和现有的基础设施中找到了在安全条件下开展实验和测试活动的合适场所。这将是首次如此深入地讨论与先进空中机动 (AAM) 发展相关的主题,众多工业参与者致力于建立连接城市和地区的全新移动服务,以满足城市及其周边地区对替代和补充交通方式日益增长的需求。军事当局和执法机构也将增强示威和辩论的参与丰富性。他们将带来更好的证据,证明技术的二元性,以及某些可以用无人机进行的活动和操作如何显著提高公民和公民活动场所的安全性。因此,我们将在同一地区同时见证民用和军用运营商执行的任务。我们将再次为年轻人的创新活力提供空间,特别是在布林迪西 DTA 管理的欧洲航天局 (ESA BIC) 企业孵化中心孵化的年轻人,并在活动期间进行奖励。年轻人也将成为新一届无人机竞赛的主角,今年将有来自普利亚、坎帕尼亚和巴西利卡塔的学生参加。我们还为他们量身定制了指导和教育计划,并安排他们参观历史空军馆,这是格罗塔列海军航空站 - MARISTAER 博物馆区的中心。我们以热情和激情迎接新一届竞赛,在 DTA 多年来一直追求的道路上又迈出了一步,为国家和欧洲航空航天体系的发展和巩固做出了贡献,我们坚信并意识到这对公司、年轻人和公民充满了机遇。
10摘要11个大型基础模型最近为生命科学开辟了新的人工通用情报12的途径,在分析单细胞转录组数据的分析中表现出了巨大的希望。13 Nevertheless, such challenges as the tremendous number of signaling regions, extreme data sparsity, 14 and the nearly binary nature of single-cell epigenomic data have prevented the construction of a 15 foundation model for epigenomics thus far, though it is evident that abundant epigenomic properties 16 such as chromatin accessibility provide more decisive insights into cell states than transcriptomics, 17 shaping the chromatin regulatory以不同的细胞类型控制转录的景观。在这里,我们介绍了Epiagent,这是第一个单细胞染色质可访问性数据的基础模型,在手动策划的大规模的人 - 示威 - corpus上预定了19个,该模型由20个大约500万个细胞和350亿个标记组成。epiagent编码染色质可访问性21个细胞模式作为简洁的“细胞句子”,并采用双向注意机制来捕获22个捕获调节网络背后的细胞异质性。具有全面的基准测试,我们23证明,Epiagent在典型的下游任务中出色,包括无监督功能24提取,有监督的细胞类型注释和数据插补。通过掺入外部25个嵌入,Epiagent促进了对样本外26的细胞反应的预测,并刺激了看不见的遗传扰动,以及参考数据整合和查询数据27映射。通过模拟关键顺式调节元件的敲除,Epiagent可以实现silico 28治疗癌症分析。我们进一步扩展了Epiagent的零射击功能,允许在新测序数据集上进行29个直接细胞类型注释,而无需进行其他培训。30 31引言32基因表达如何受到候选顺式调节33个元素(CCR)之间的复杂相互作用的控制,长期以来一直是基因组学领域的基本问题。的确,34这些元素不仅取决于其DNA序列,还取决于驱动与基因调节1,2相关的细胞异质性的表观遗传修饰35。在这些见解上,使用测序(SCATAC-SEQ)的单细胞36分析可用于转座酶可访问的染色质(SCATAC-SEQ)为揭示单个细胞的这些调节性景观3提供了前所未有的37个机会3,实现了38个细胞异质性4,组织发育4,组织的疾病机构5和疾病机制6。随着测序39技术的进步,已经构建了众多涵盖胎儿发育7,成人组织8、40脑组织9和神经发育10的大型细胞图谱,并提供了前所未有的资源41,可在多元化的生理条件下揭露调节模式。但是,大量的42个CCR,极端的稀疏性及其几乎二元性质对Scatac- 43
自2009年该研究所成立以来,物理部一直是一个充满活力的部门。目前,该部门由19位教职员工组成,这些教职员工在各种领域的专业知识,例如冷凝物理学,高能量物理,黑洞物理学,仪表/重力二元性和复杂网络。我们的研究实验室拥有最先进的设施,多年来不断发展和发展,以促进年轻研究专业学生之间尖端的研究并促进创新和技术的发展。我们的博士生已被安置在全球著名的机构中,并正在积极进行研究。我们致力于为学生提供实践研究经验的承诺,从本科到研究生课程的各个层次。为此,该部门已经建立了15多个高级研究实验室,每个实验室都专注于物理学的不同分支,以为我们的学生提供独特的研究机会和出色的学习经验。 IIT Indore的物理系自豪地展示了各种尖端的搜索区域,可以将其大致分为三个主要亚组:凝结物理物理,高能量物理学以及复杂的网络和系统(更多细节出现在后续页面中)。 该部门以促进高度合作的研究环境而感到自豪,该研究促进了IIT Indore的各个部门以及著名的国家和国际机构的密切互动。为此,该部门已经建立了15多个高级研究实验室,每个实验室都专注于物理学的不同分支,以为我们的学生提供独特的研究机会和出色的学习经验。IIT Indore的物理系自豪地展示了各种尖端的搜索区域,可以将其大致分为三个主要亚组:凝结物理物理,高能量物理学以及复杂的网络和系统(更多细节出现在后续页面中)。该部门以促进高度合作的研究环境而感到自豪,该研究促进了IIT Indore的各个部门以及著名的国家和国际机构的密切互动。目前,我们与IISC BANGALORE,IIT(孟买,德里,马德拉斯,坎普尔,坎普尔,罗帕尔,海德拉巴),rrcat,indore,barc,barc,iisers,iisers,iisers(kolkata,kolkata,pune,pune,pune,behrampur),hri allia hri hri allahabad,中心大学加尔各答和Sinp - 加尔各答。Our international collaborations include but are not limited to the University of Cambridge, Uni- versity of Oxford, Stanford University, Michigan State University-USA, Penn State University- USA, CUNY-USA, LUH Hannover-Germany, Rutherford Appleton Laboratory and ISIS Facili- ties - UK, TU Berlin - Germany, TU Dortmund - Germany, Queens Marry University London- UK, LMU-Munich,德国,伯尔尼大学 - 西区,大阪大学 - 日本 - NTU-辛加普尔,复杂性科学研究所 - 意大利CNRS,Instituto Superior Tecnico,Lisbon,葡萄牙。
图1.7。 对中国和美国的专业出口集中浓度是增长的风险27图1.8。 货币政策是适应性的28图1.9。 说明性公共债务路径30图1.10。 社会流动性在智利32图1.11中很低。 经济脆弱性很高,而收入集中在图1.12的前33位。 核心支出不成比例地落在人口最贫穷的部分34图1.13。 教育的质量和包容性低35图1.14。 在学前,初级和中等教育中的支出落后于36图1.15。 幼儿教育的入学人数增加了,但质量仍然很低37图1.16。 二元性和非正式性仍然很高38图1.17。 培训计划未达到最脆弱的40图1.18。 税收和转移系统可以为弱势家庭提供更多保护41图1.19。 个人所得税结构几乎没有再分配功率42图1.20。 说明了所选税制改革的示例收入再分配影响44图1.21。 智利是教育组之间健康状况最高的差距之一。45图1.22。 自付费用用于医疗保健的支出是经合组织45图1.23中最高的。 生产率低,两极化48图1.24。 竞争压力保持低49图1.25。 某些法规的复杂性在经合组织50中仍然是最高的图1.26。 应系统评估新法规的影响52图1.27。图1.7。对中国和美国的专业出口集中浓度是增长的风险27图1.8。货币政策是适应性的28图1.9。说明性公共债务路径30图1.10。社会流动性在智利32图1.11中很低。经济脆弱性很高,而收入集中在图1.12的前33位。核心支出不成比例地落在人口最贫穷的部分34图1.13。教育的质量和包容性低35图1.14。在学前,初级和中等教育中的支出落后于36图1.15。幼儿教育的入学人数增加了,但质量仍然很低37图1.16。二元性和非正式性仍然很高38图1.17。培训计划未达到最脆弱的40图1.18。税收和转移系统可以为弱势家庭提供更多保护41图1.19。个人所得税结构几乎没有再分配功率42图1.20。说明了所选税制改革的示例收入再分配影响44图1.21。智利是教育组之间健康状况最高的差距之一。45图1.22。自付费用用于医疗保健的支出是经合组织45图1.23中最高的。生产率低,两极化48图1.24。竞争压力保持低49图1.25。某些法规的复杂性在经合组织50中仍然是最高的图1.26。应系统评估新法规的影响52图1.27。可以进一步简化破产制度53图1.28。腐败仍然很低54图1.29。绿色生长指标59图2.1。增加对固定宽带的访问并减少区域差异是主要挑战66图2.2。通信的调节障碍为高68图2.3。Internet中存在很大的差异70图2.4。在家中访问Internet由社会经济变量71图2.5。数字采用滞后于主要在微型公司72图2.6。智利工人缺乏在数字时代蓬勃发展的技能73图2.7。培训老师成为数字化转型的驱动力应该是优先事项75图2.8。应避免数字化转型和极端使用的风险76图2.9。ICT技能越来越多。智利正经历着ICT工人的明显短缺78图2.11。桥接创新鸿沟是为了提高生产率80图2.12。R&D和创新支出保持较低81图2.13。公众对创新的支持有所增加,但仍然有限82图2.14。应加强业务合作83图2.15。数字工具的扩散需要增强85图2.16。数字采用导致较高的公司水平生产率86图2.17。电子商务一直在快速增长87图2.18。竞争压力仍然很低,监管负担高89图2.19。智利有增加金融科技初创企业的数量92图2.20。风险投资的发展已停滞在智利92图2.21。数字服务贸易限制性高94图2.22。国家监管框架与该地区的互操作性可以改善95图2.23。在智利97图2.24中,数字密集型领域的就业仍然很低。智利劳动力市场显示了两极分化的迹象98图2.25。超过一半的工作有自动化的风险,影响了更多的低层和中产阶级99图2.26。在过去的十年中,常规手动职业和自动化高风险的人就业有所下降100图2.27。智利101中的自动化风险和劳动力市场过渡图2.28。智利101中的人工智能和劳动力市场过渡图2.29。自动化风险导致低收入的工资较低,但人工智能具有积极影响102图2.30。在线平台以智利103的快速速度增加了图2.31。自雇,临时和非正式工作在智利104图2.32中普遍存在。参与培训的智利108图2.33。大多数脆弱的工人接受较少的培训109图2.34。数字政府服务的吸收仍然很低112
热场复偶(TFD)是反德西特/共形场论(AdS/CFT)对应关系中的一种特殊状态[1],它将 D + 1 维反德西特空间中的假定量子引力理论与维度 D 边界上的共形场论联系起来。黑洞发射热辐射[2],实际上在外部留下一个热密度矩阵。以色列[3]指出,通过考虑热场复偶可以重现可观测量的计算,类似于史瓦西几何的最大延伸。后来,马尔达西那[4]在 AdS/CFT 的背景下推测,边界 CFT 的 TFD 应该对应于 AdS 中永恒的双面黑洞。存在于相差一维的理论之间的对偶性这种想法通常被称为全息论。为了检验这种二元性,考虑可穿越虫洞现象是很有趣的,这是 AdS/CFT 的一个惊人预测。从引力的角度来看,黑洞两侧的边界显然不能因果通信。虽然有一个空间虫洞连接两个外部区域,但人们无法穿越它而不落入黑洞奇点。如果爱丽丝和鲍勃在对立面,他们就无法相遇,除非他们一起跳进黑洞。Gao、Jafferis 和 Wall [ 22 ] 的最新进展表明,两种边界理论的特定耦合会产生负能量冲击,使 TFD 状态下的虫洞可穿越。换句话说,鲍勃可以与爱丽丝团聚而不会被吸入黑洞。作为此协议以及 AdS/CFT 中许多其他思想实验的起点,人们假设可以访问 TFD 状态。一个很有前途的用于探测 AdS/CFT 的量子力学系统是 Sachdev-Ye-Kitaev (SYK) 模型 [5,6]。例如,它在低能下表现出共形对称性,其动力学由 Schwarz 作用量支配 [7]。相同的作用量支配着一种被称为 Jackiw-Teitelboim 引力的二维量子引力理论 [8,9]。此外,它已被证明会在低温下使混沌界限饱和,这也是黑洞最大扰乱的标志 [10,11]。在参考文献 [12] 中,作者在近 AdS2 中构造了永恒可穿越虫洞解,并表明两个耦合 SYK 模型的低能极限具有相同的作用量。一个关键结果是,他们表明 SYK 模型的 TFD 可以很好地通过具有小相互作用的双边哈密顿量的基态来近似。在本研究中,我们考虑了在噪声中尺度量子 (NISQ) [ 13 ] 设备上准备 SYK 模型的 TFD 的状态的任务。参考文献 [ 14 ] 中考虑了准备任意理论的 TFD 的更一般任务。同样,该策略是构建一个哈密顿量,其基态编码了 TFD 结构。虽然方程中的哈密顿量文献 [ 12 ] 中的 (3.21) 可以看作文献 [ 14 ] 中构造的略微特殊版本,我们将在本文中使用它,因为它相对简单。这两种方法都考虑使用辅助浴将系统绝热冷却到基态。在这里,我们采用变分法,从参数可调的量子电路假设开始。这样就不需要辅助系统了。类似的方法曾用于构造 Ising 模型的 TFD [ 15 ]。简而言之