引言正在进行的全球变暖已经在改变植物物种的生长和地理分布(Doblas-Miranda等,2017; Vellend等,2017)。鉴于当前的快速变暖速率,预计全球温度将在2030年至2050年之间升高 +1.5°C(IPCC,2018年)。气候变化对自然生态系统的影响会导致植物物种地理分布范围的扩张,减少或变化(Lenoir等,2008)。因此,这些影响可能会对陆生能,水通量以及CO 2排放产生重大影响(Forzieri等,2020)。此外,这种变暖正在影响各个层面的生物多样性,从个人和社区到整个生态系统(Franklin等,2017)。在地中海地区观察到的,自然生态系统特别受到全球变暖和极端气候事件的影响(Doblas-Miranda等,2017; Lionello and Scarascia,2018)。因此,在预计的气候变化情景下对植物物种的地理分布的理解非常感兴趣(Franklin等,2017),特别是对于制定适应性良好的保护和管理计划的发展(Kozak等,2008)。评估植物物种对气候变化的脆弱性,物种分布模型(SDM)通常被越来越多地使用。这些模型通过基于环境因素插值和推断其分布来预测物种的地理范围(Guisan等,2017; Pecchi等,2019)。此外,物种分布模型为自然资源的保护和管理提供了全面的基础(Sinclair等,2010; Qin等,2017)。当前,有许多可用的SDM方法,例如Bioclim(Bioclimatic建模),域(域环境包膜),GAM(广义加性模型),MARS(多变量自适应回归光谱)和Maxent(Maxtainter(Maximak)(最大值)(Pecchi等人,2019年)。中,Maxent算法(Phillips等,2006)在提供仅存在的数据时提供了可靠的适合性结果,并且在处理广泛分布和稀有物种的出现方面具有很高的灵活性(Elith等,2006; Moukrim等,2019; Kassout等,2019; Kassout等,20222a)。例如,最大的熵模型已用于预测宏观生态模式(Harte,2011年),物种丰度分布(White等,2012),基于特质的社区组装(Shipley等,2011)和物种生态位模型在多个尺度上(Elith等,2010; Guisan等,2017,2017年)。Ceratonia Siliqua L.(豆科植物)是一种常绿,嗜热和二元的地中海果树(Batlle和Tous,1997; Baumel et al。,2018; Kassout等,2023),有一些稀有的Hermaphrodite和单调的案例(Batle and Batle和Toble和Tous)(1997)。Cacob(C。C. silliqua)是一棵缓慢生长的长树,对干旱具有很高的抵抗力,但对极度寒冷的抵抗力有限(Batlle和Tous,1997),这有助于其重要的遗传多样性(Viruel等,2019)和