摘要:使用纳米颗粒的药物输送系统目前在纳米医学研究的全景中。在肿瘤学中,使用蒽环类抗生素的化学治疗方案依赖于治疗的剂量来最大程度地减少对患者的副作用的严重性。因此,即使在有针对性的输送系统中,量化用于治疗的剂量和质量控制的药物水平也非常重要。在本文中,作为改善纳米药物量化程序的可行途径,我们提出了一种简单的分析方案,以量化用循环二色谱(CD)量化在非手壳硝酸碳核点(CNDS)上的蒽环类药物(CNDS)。使用了邻苯二甲药药物之间的线性关系,然后对CNDS共轭物进行测量,用于实现量化技术,该技术显示了每种邻苯二甲酸酯的不同药物负荷,例如使用的每种蒽环类药物,例如使用,例如daunorububibicin,daunorbubibicin,daunorubibicin,doxorububibicin,doxorububibicin和epirubibicin。
我们介绍了使用各种实现技术和语言构建的裸机服务器的验证,该技术根据机器代码,网络数据包和椭圆形曲线密码学的数学规范来针对全系统输入输出规范。我们在整个堆栈中使用了非常不同的形式性技术,范围从计算机代数,符号执行和验证条件生成到对功能程序的交互式验证,包括用于C类和功能性语言的编译器。所有这些组件规格和特定于领域的推理技术都是针对COQ证明助手中常见的基础定义和合理的。连接这些组件是一种基于功能程序和简单对象的断言,无所不知的程序执行和基本分离逻辑,用于内存布局。此设计使我们能够将组件以最高级别的正确性定理汇总在一起,而无需理解或信任内部接口和工具而可以进行审核。我们的案例研究是一款简单的加密服务器,用于通过公开验证的网络消息翻转一些状态,其证明显示了总功能正确性,包括内存使用方面的静态界限。本文还描述了我们使用的特定验证工具的经验,以及对我们经历的工具和任务组合之间经历的生产力差异的原因的详细分析。
这种方法倾向于创建不良的缺陷,然后将其去除需要其他退火步骤。最近,大量的研究注意力集中在2D材料上,[1,2],因为它们不仅具有从绝缘子到金属的电子特性,而且具有与降低尺寸相关的独特特性。虽然2D材料可以用与散装系统相同的方法掺杂,但它们的方法是独特的。由于仅表面几何形状,也可以通过以下方式获得2D材料中的掺杂; 1)物理/化学吸附; 2)离子液体门控; 3)直接原子构造。[3,4]表面吸附和离子 - 液体门基本上与环境与2D材料之间的电荷转移的实现相同,这两个材料都非常有效,这两个材料都非常有效。但是,系统集成的困难限制了这些方法的实际应用。可以通过硫化/硒化来完成2D材料中的直接原子替代。[5]或者,可以通过辐射[6,7]或退火过程中的热蒸发产生空缺,然后进行掺杂物种的沉积。直接替代也可以通过离子植入来实现,但是在技术上很难,因为它需要非常低的离子能量(低于100 eV),或者需要额外的缓冲层和通量后的涂层[9],否则离子会通过原子上的较薄靶标。[10,11]至于2D过渡金属
摘要:由于特性和维度的独特组合,研究了纳米级的各种应用,研究了过渡金属二分元。对于许多预期的应用,热传导起着重要作用。同时,这些材料通常包含相对较大的点缺陷。在这里,我们对内在和选择外部缺陷对MOS 2和WS 2单层的晶格导热率的影响进行系统分析。我们将Boltzmann传输理论与Green基于功能的T -Matrix方法相结合,以计算散射速率。缺陷配置的力常数是通过回归方法从密度功能理论计算获得的,这使我们能够以中等的计算成本采样相当大的缺陷,并系统地强制执行翻译和旋转声音总和规则。计算出的晶格导热率与MOS 2和WS 2的热传输和缺陷浓度的实验数据定量一致。至关重要的是,这表明在实验上观察到的晶格热导率的1/ t温度依赖性的强偏差可以通过点缺陷的存在来充分说明。我们进一步预测了固有缺陷的散射强度,以减少两种材料中两种材料中序列Vmo≈v2s => V 2S => v 2s> v s> s AD,而外部(ADATOM)缺陷的散射速率随着质量的增加而降低,以使li AD AD aD aD aD aD aD aD> k aD> k AD。与较早的工作相比,我们发现固有和外在的原子质都是相对较弱的散射体。我们将这种差异归因于翻译和旋转声音总规则的处理,如果不执行,则可能导致零频率限制的虚假贡献。
摘要:由于特性和维度的独特组合,研究了纳米级的各种应用,研究了过渡金属二分元。对于许多预期的应用,热传导起着重要作用。同时,这些材料通常包含相对较大的点缺陷。在这里,我们对内在和选择外部缺陷对MOS 2和WS 2单层的晶格导热率的影响进行系统分析。我们将Boltzmann传输理论与Green基于功能的T -Matrix方法相结合,以计算散射速率。缺陷配置的力常数是通过回归方法从密度功能理论计算获得的,这使我们能够以中等的计算成本采样相当大的缺陷,并系统地强制执行翻译和旋转声音总和规则。计算出的晶格导热率与MOS 2和WS 2的热传输和缺陷浓度的实验数据定量一致。至关重要的是,这表明在实验上观察到的晶格热导率的1/ t温度依赖性的强偏差可以通过点缺陷的存在来充分说明。我们进一步预测了固有缺陷的散射强度,以减少两种材料中两种材料中序列Vmo≈v2s => V 2S => v 2s> v s> s AD,而外部(ADATOM)缺陷的散射速率随着质量的增加而降低,以使li AD AD aD aD aD aD aD aD> k aD> k AD。与较早的工作相比,我们发现固有和外在的原子质都是相对较弱的散射体。我们将这种差异归因于翻译和旋转声音总规则的处理,如果不执行,则可能导致零频率限制的虚假贡献。
对谐振介电纳米结构的操纵对于下一代光子设备至关重要。传统上,研究人员为此目的使用二维或相变材料。然而,前者导致较小的效率,而后者则缺乏持续变化。在这里,我们通过激光诱导的修改提供了另一种方法。cally,通过激光消融过程,我们合成了钼(MOS 2)纳米颗粒(NPS),然后我们通过激光片段来控制其组合。它导致MOS 2转化为其氧化物MOO 3 - X,进而导致光学响应的明显修饰,这是由于其光学常数之间的较大差异。此外,与原始MOS 2和经典的硅NP相比,激光碎片的NP具有更大的光热反应。因此,我们的基于MOS 2的激光可触摸NP为共振纳米光子剂(尤其是光热疗法)开辟了新的观点。
垂直堆叠的范德华(VDW)异质结构具有独特的电子,光学和热特性,可以通过扭曲角工程来操纵。然而,双层界面处的弱语音耦合施加了基本的热瓶颈,以实现未来的二维设备。使用超快电子衍射,我们直接研究了照片诱导的MOS 2 /WS 2中的非平衡声子动力学,在4°扭曲角度和WSE 2 /Mose 2的旋转角度为7°,16°,16°和25°和25°。,我们确定了一个层间传热通道,其特征时间尺度为约20个皮秒,假设初始内部内部热化的分子动力学模拟比分子动力学模拟快约一个数量级。涉及声子散射的原子计算表明,此过程起源于初始层间电荷转移和散射之后的非热声子种群。我们的发现通过调整非平衡声子种群来提出VDW异质结构中热管理的途径。