涡轮额定功率的增加超过≥14MW,需要替代稀土永久磁铁(PM)发电机是风能领域的当前趋势。1个高温超导(HTS)在电兴奋的同步发电机中是一种有前途的替代方案,在过去十年中,它一直是几个研究项目的主题。2对于多种优势,HTS激发大多是在无齿轮,直驱动(DD)同步发电机(额定速度NN≈10RPM)的背景下进行讨论的,例如减少的发电机质量M Gen和增加机械电源转换的发电机效率η。在EcoSwing项目3中已证明了无齿轮3.6 MW发电机的技术可行性。避免使用齿轮以更高的可靠性和较低的维护工作能力产生非常大的DD发电机,以实现大发电机扭矩。较大的发电机尺寸随迄今为止昂贵的HTS材料带来了大量。
单位 - i引言,半导体中的运输现象,p-n结的形成,p-n连接的性质,p-n结二极管;半导体二极管,V-I特征,温度对V-I特征的影响,理想二极管,二极管方程,二极管电阻,二极管电容:过渡和扩散电容。单元 - II整流电路和直流电源:二极管电路的负载线分析,半波整流器:电压调节,波纹因子,整流比率,更新的比率,变压器利用率。全波整流器,桥梁整流器。电源过滤电路:电感过滤器,电容器过滤器,LC滤波器,多LC滤波器,CLC或P滤波器。Zener二极管:使用Zener二极管分解机制,特性,规格,电压调节器电路。单元-III晶体管:简介,构造,类型:NPN和PNP,当前组件。晶体管作为放大器,晶体管特性,晶体管电路配置:共同基座(CB)配置,公共发射极(CE)配置,公共收集器配置(CC),早期效果。ebers-moll模型,最大电压评级。单位 - IV晶体管偏置和热稳定:工作点,偏置稳定性,稳定性因子,发射极偏置,收集器 - to - 基本偏见,电压分隔符,发射极偏置,发射器旁路电容器。偏见补偿。单元 - V场效应晶体管(FET):引言,构造,操作,V-I特征,转移特性,漏液特征,小信号模型。教科书的名称:金属氧化物半导体场效应晶体管(MOSFET):简介,结构,操作和特征,耗尽MOSFET,增强MOSFET。
UNIT-I 12 小时 回顾半导体物理、p-n 结二极管、p-n 二极管特性及其操作、p-n 结电容(耗尽和扩散)、p-n 二极管击穿 二极管应用:削波和钳位电路、整流电路、齐纳二极管、齐纳二极管作为调节器、电压倍增器、p-n 二极管的开关行为 双极结型晶体管:晶体管的介绍和类型、结构、CB、CE 和 CC 模式下的 BJT 特性、工作点、交流/直流负载线、漏电流、饱和和截止工作模式、Ebers-moll 模型 偏置稳定:稳定需求、各种偏置方案、相对于 Ico、V BE 和 β 变化的偏置稳定性、稳定因素、热稳定性。
对于SIC MOSFET和GAN HEMTS,可以利用第三个象限传导能力用于自由式,而无需外部二极管。在这种情况下,第三象限反向传导是通过电源设备的车身二极管或通道进行的,电流从源到排水侧的流动。SIC具有P-I-N身体二极管,但是,GAN没有任何固有的二极管。反向传导通过SIC和GAN的通道发生的固有二极管发生。gan的反向传导特征往往较差,尤其是在应用阳性闸门源偏置的情况下(图2)[3]由于较高的耗尽电压下降的来源。反向导出时间是较高和较低开关之间的停留时间是GAN性能的关键因素之一。
,已被称为超导二极管效应。效果的根源取决于对称性破坏机制。我们研究了NBN和NBN/磁绝缘子(MI)杂种的超导微桥。应用二极管效率为30%时,当施加了小至25 mt的平面磁场时。在NBN和NBN/MI杂种中,我们发现当磁场平行于样品平面时,二极管效应消失。我们的观察结果与涡旋表面屏障确定的临界电流一致。超导带的两个边缘的不等障碍导致二极管效应。此外,观察到矩阵的最高可达10 K,这使得基于二极管应用的设备可能在更大的温度范围内的设备潜力。
综合主题内容(在计划及其概念结构的开发中要解决)主题单元 1:半导体的基本理论 1.1 绝缘体 1.2 导体 1.3 本征和非本征半导体。 1.4 PN结。主题单元 2:二极管 2.1 二极管模型。 2.2 二极管极化。 2.3 二极管排列。 2.4 二极管的类型。主题单元 3:双极结型晶体管。 3.1 BJT晶体管的结构3.2 BJT晶体管的模型。 3.3 BJT晶体管的极化。主题单元 4:金属氧化物半导体场效应晶体管 4.1 MOSFET 晶体管的结构。 4.2 MOSFET晶体管模型。 4.3 MOSFET 晶体管偏置。主题单元 5:放大器 5.1 放大器的特性。 5.2 无源负载放大器5.3 有源负载放大器。 5.4 差分放大器。 5.5 多级放大器。
图 11 所示的电路描绘了三相逆变器的一条支路;图 12 和 13 显示了 Q1 和 D2 之间电流换向的简化图示。电源电路中从芯片粘合到 PCB 轨道的寄生电感被集中到每个 IGBT 的 LC 和 LE 中。当高端开关打开时,V S1 低于 DC+ 电压,其电压降与电源开关和电路的寄生元件有关。当高端电源开关关闭时,由于连接到 V S1 的电感负载(这些图中未显示负载),负载电流会瞬间流入低端续流二极管。该电流从 DC 总线(连接到 HVIC 的 COM 引脚)流向负载,并在 V S1 和 DC 总线之间产生负电压(即,HVIC 的 COM 引脚的电位高于 VS 引脚)。
摘要:CMOS光二极管已在微系统应用中广泛报道。本文使用COMSOL多物理学对P – N结光电二极管的设计和数值模拟,用于三种CMOS技术(0.18 µm,0.35 µm,0.35 µm和0.7 µm)和三个不同的P – N交界结构:N+/P-Substrate,P-Substrate,P+/N-N-Well/n-Well/n-Well/well/p-Subsulate。对于这些模拟,根据不同的技术设定了深度连接和掺杂剂浓度。然后,每个phodiode均在分光光度法上进行了分光光度法的特征,响应性和量子效率。获得的数值结果表明,当需要可见的光谱范围时,0.18和0.35 µM CMOS技术是具有效率最高峰的最高峰的技术,与0.7 µM技术相比。此外,比较了三个最常见的P – N垂直连接光电二极管结构。N+/p-Substrate Juints Photodiode似乎是可见范围内具有最高量子效率的一种,与文献一致。可以得出结论,光电二极管的特征曲线和暗电流值与文献中的报告一致。因此,这种数值方法允许预测光电二极管的性能,帮助在其微加工之前为每个必需的应用程序选择最佳的结构设计。
作者的完整清单:Yuhan的Guan; Zhang Zhang的Zhejiang师范大学,XU;加利福尼亚州立大学Northridge,Guangjun的物理和天文学Nan; Zhejiang普通大学物理学系