我们考虑三层 F 1 F 2 F 3 约瑟夫森结,它们在二维上是有限的,并且每个铁磁体 F i (i=1,2,3) 具有任意磁化强度。三层夹在两个 s 波超导体之间,它们具有宏观相位差∆ φ。我们的结果表明,当磁化具有三个正交分量时,超电流可以在∆ φ = 0 处流动。利用我们的广义理论和数值技术,我们研究了电荷超电流、自旋超电流、自旋扭矩和态密度的平面空间分布和∆ φ 依赖性。值得注意的是,当将中心铁磁层的磁化强度增加到半金属极限时,自偏置电流和感应二次谐波分量显著增强,而临界超电流达到其最大值。此外,对于很宽范围的交换场强度和方向,系统的基态可以调整为任意相位差 ϕ 0 。对于中间层 F 2 中的中等交换场强度,可以出现 ϕ 0 状态,从而产生超导二极管效应,从而可以调整 ∆ ϕ 以产生单向无耗散电流。自旋电流和有效磁矩揭示了半金属相中的长距离自旋扭矩。此外,态密度揭示了相互正交磁化配置的零能量峰的出现。我们的结果表明,这种简单的三层约瑟夫森结可以成为产生实验上可获得的长距离自偏置超电流和超流二极管效应特征的绝佳候选者。
因为激光培养基(例如激发氧气)是由化学反应产生的。然而,尽管他们在上个世纪进行了深入的研究,但期望很快就会失望,因为可以使这种激光器运行的物流非常繁琐。在21世纪初,纤维激光技术取得了革命性的进步。现在,市售的纤维激光器达到100 kW。军事部门也注视着这一进展,并且已经开发了许多基于纤维激光器的防御激光原型。这些激光器中的一些现在处于部署阶段。但是,在限制限制的输出功率方面,纤维激光器有一个基本限制。Dawson等。 [1]理论上表明单模(Di raction-limimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimim Plaser C BLASER都无法超过36 KW。 现有的防御激光原型束缚了多纤维激光器,其光束质量远非不同的限制。 与高功率纤维激光繁荣同时,出现了一种新的气体激光概念。 它被命名为“二极管泵的碱性激光(DPAL)”。该激光器具有可伸缩性,可与具有差异限制的光束质量的化学激光器相当,但通过高度有效的电驱动激光二极管(LD)泵送。 在本文中,讨论了DPAL的原则,历史,当前情况和拟议的应用。Dawson等。[1]理论上表明单模(Di raction-limimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimim Plaser C BLASER都无法超过36 KW。现有的防御激光原型束缚了多纤维激光器,其光束质量远非不同的限制。与高功率纤维激光繁荣同时,出现了一种新的气体激光概念。它被命名为“二极管泵的碱性激光(DPAL)”。该激光器具有可伸缩性,可与具有差异限制的光束质量的化学激光器相当,但通过高度有效的电驱动激光二极管(LD)泵送。在本文中,讨论了DPAL的原则,历史,当前情况和拟议的应用。
图 2. (a) 对于 𝐼 𝑎𝑐,𝑀𝐴𝑋 = 70.7 μA 和 𝑓 𝑎𝑐 = 800 MHz,整流直流电压与施加到自旋转矩二极管的直流电流的关系图,蓝色圆圈是微磁模拟的结果,红线是抛物线拟合。 (b) 对于 (a) 中的相同 𝐼 𝑎𝑐,𝑀𝐴𝑋 和 𝑓 𝑎𝑐,固有相移 (空心方块) 和沿 x 轴的磁化幅度 (实心菱形) 与直流电流的关系。 (c) 固有相移与微波频率和直流电流的关系相位图,其中 𝐼 𝑎𝑐,𝑀𝐴𝑋 = 70.7 μA 。垂直线表示自振荡电流阈值 |𝐼 𝑡ℎ | = 0.056 mA 。水平线表示图 (a) 和 (b) 中使用的微波频率值。(d) 图 (c) 中用圆圈表示的工作点的施加电流 (左侧 y 轴) 和磁化强度 < 𝑚 𝑋 > 的空间平均 x 分量 (右侧 y 轴) 的时间轨迹。图中还标出了两个时间轨迹之间的时间偏移 Δ 𝑡。
当前使用的大多数终身测试方法标准都仅考虑参数故障;那就是LED产品的光输出维护。重要的是,测试和预测仅基于系统中LED包的测量。即使考虑了整个系统,研究表明,应用中的照明产品可能会在参数或灾难性上失败。文献表明LED系统寿命取决于应用环境和使用模式。一起,这些条件会导致高LED连接温度(降低了芯片周围的组件,并导致参数衰竭)和互连处的热应力(这导致连接断裂并导致灾难性故障)。因此,为了准确估计LED照明系统的寿命,测试方法和实验设置必须具有改变环境条件和开关开关模式的能力。
基于Gan Schottky屏障二极管(SBD),使用反行二极管对(APDP)的频率三副制作者以3.6 GHz的输出频率进行了建模和建模。此外,明确研究并比较了两种连接方案,即APDP系列APDP和Shunt APDP三倍器。与分流APDP三倍器相比,系列APDP三重序列的输出功率更高-0.14 dbm,最小转化率较小26.9 dB。提出了两种类型三级游戏的精确紧凑型模型,以验证三倍体的产生功率和性能的产生。在紧凑的模型中,从i - v特征和宽带小信号s参数中提取了SBD的非线性香料参数和二极管对的寄生参数。三元器的输入和输出网络被取消安装,以确保谐波模拟的准确性。APDP作为频率三倍器的出色性能和相应的模型为设计RF乘数提供了一种实用的选择。
设计师通常不必要地支付比仅仅用于适应他们所选择的申请中迫在眉睫的电阻稳定性偏移所需的更严格的公差付费。在这些应用程序中选择像CSM这样的高稳定性组件,消除了由于“计划不稳定”而导致的偏移津贴的需求,并且允许使用基于其他技术的电流感应电阻所需的较松开始的初始公差。
光伏系统最大功率输出与控制优化分析建立在准确可靠的光伏电池参数辨识基础上,但其高度非线性、多峰性等难题成为传统优化方法获取准确高效结果的障碍。本研究采用一种新型智能优化算法——MA(may fly algorithm,MA)对光伏电池三二极管模型(TDM)进行高效辨识,并以最小均方根误差(RMSE)作为评价指标验证算法的有效性。而且,通过不断调整MA的参数、种群数量和迭代次数来更好地平衡全局发展与局部优化的关系,从而获取更高效、更优的优化结果。研究案例表明MA在光伏电池参数辨识的准确性和稳定性方面优于其他元启发式算法。例如,MA 获得的 RMSE 的最小标准差 (SD) 比其他算法小 1,305 倍。
摘要—本文报告了一项综合研究,该研究优化了使用镍、钛和钼接触金属制成的 3.3 kV 结势垒肖特基 (JBS) 二极管的 OFF 和 ON 状态特性。在此设计中,使用与优化终端区域相同的植入物来形成 JBS 有源区域中的 P 区。P 区的宽度和间距各不相同,以优化器件的 ON 和 OFF 状态。所有测试的二极管均显示出高阻断电压和理想的开启特性,最高额定电流为 2 A。然而,发现漏电流和肖特基势垒高度 (SBH) 与肖特基与 p + 区域的比例成比例。没有 p + 区域的全肖特基和具有非常宽肖特基区域的肖特基具有最低的 SBH(Ni 为 1.61 eV、Mo 为 1.11 eV、Ti 为 0.87 eV)和最高的漏电流。肖特基开口最小(2μm)的二极管具有最低的关断状态漏电,但它们受到周围 p + 区域的严重挤压,从而增加了 SBH。性能最佳的 JBS 二极管是间距最窄的 Ni 和 Mo 器件,p + 植入物/肖特基区域均为 2μm 宽。这些器件提供了最佳的平衡器件设计,具有出色的关断状态性能,而肖特基比保证了相对较低的正向压降。
功率循环测试是研究功率转换器可靠性性能和评估其相对于温度应力的寿命的主要方法之一。在传统的功率循环方法中,结温测量是使用热敏电参数 (TSEP) 进行的,例如低电流下的通态电压(对于双极元件:IGBT 和二极管……)[1] 或 MOSFET 的阈值电压 V 𝑡ℎ [2]。当在 PWM 类型的电气约束下进行功率循环时,这些方法的实现很复杂。测试前还需要对每个组件进行精确校准。本文提出了一种创新的测试台,用于在功率循环期间在线测量结温,以研究嵌入在 PCB 中的功率二极管的可靠性 [3]。所提出的方法基于使用导通期间正向电压 𝑉 𝐹 和正向电流 𝐼 𝐹 的变化来估算热电压 𝑈 𝑇 并从而实时估算结温。这有助于即使在高循环频率(> 1 kHz)的情况下也能获得良好的近似值。表 1 对经典方法和所提出的方法进行了简要比较。首先,给出了该方法的描述,然后介绍了功率循环电路的代表性设计。
模块 1 : 4 串电池组输入端, BAT- 为电池组最低端的负极, VC1 为第一节电池正端, VC2 为第 二节电池正端, VC3 为第三节电池正端, BAT+ 为第四节电池正端(即电池组的最高极)。 CW1243 没有上电顺序要求,但建议从低节到高节依次上电,避免出现接错,反接等现象。注意 BAT- , BAT+ 在充放电过程中会有大电流,接在 BAT- , BAT+ 上的导线最好能够足够粗。 模块 2 : 电池组电压进芯片端滤波电路,电容尽量靠近芯片。 模块 3 : R SENSE 电阻,通过检测其上的电压值,计算放电过程中的电流。 模块 4 : 103AT NTC 电阻( 3435 )。 模块 5 : 充放电负端。 模块 6 : 充电正端,二极管是为防止充电器反接,如不需要,可以拆掉,用导线将两端短接。 模块 7 : P+ , P- 放电端口的稳压,续流二极管以及电容。 模块 8 : CIT 电容,控制放电过流 1 ,过流 2 延时时间电容,可以根据需要自行更换。 模块 9 : 充放电高温保护匹配电阻。 模块 10 : VINI 处滤波电路 R 以及 C ,可以适当的调节过流保护延迟时间,同时提高电流检测 精度。