量子计算是物理学研究中最有前途的活跃领域之一。这是因为量子算法有潜力超越经典算法。与经典线性搜索相比,Grover 搜索算法的速度提高了二次方。与经典模拟相比,薛定谔方程的量子模拟具有指数级的内存节省。本文回顾了量子计算的思想和工具。以 Grover 算法为例进行了研究和模拟。使用 Qiskit 量子计算库,开发了一个模拟一维粒子薛定谔方程的代码,在本地进行模拟,并在实际的 IBM 量子计算机上运行。在零势场、谐波势场和线性势场中演化出几个初始状态。将得到的结果与文献中的类似结果进行了比较。
我们提出了用于经典模拟高斯幺正和应用于非高斯初始状态的测量的有效算法。这些构造基于将非高斯状态分解为高斯状态的线性组合。我们使用协方差矩阵形式的扩展来有效地跟踪高斯状态叠加中的相对相位。我们得到了一个精确的模拟算法,其成本与表示初始状态所需的高斯状态数成二次方关系,以及一个近似模拟算法,其成本与与叠加相关的系数的 l 1 范数成线性关系。我们定义了量化此模拟成本的非高斯性度量,我们将其称为高斯秩和高斯范围。从量子资源理论的角度,我们研究此类非高斯性测度的性质,并计算与连续变量量子计算相关的状态的最佳分解。
摘要 金融衍生品的定价,特别是百慕大期权等可提前行使的期权的定价,是金融机构重要但繁重的数值任务,其加速将对业务产生巨大的影响。最近,量子计算在金融问题中的应用开始被研究。在本文中,我们首次提出了一种百慕大期权定价的量子算法。该方法使用通过量子振幅估计估计出的插值节点的值,通过切比雪夫插值对百慕大期权定价的关键部分延续值进行近似。在该方法中,生成基础资产价格路径的调用预言机的次数为 O(ϵ –1),其中 ϵ 是期权价格的误差容忍度。这意味着与基于经典蒙特卡洛的方法(如最小二乘蒙特卡洛)相比,速度提高了二次方,其中预言机调用次数为 O(ϵ –2)。
根据带电粒子在大型强子对撞机 (LHC) 等对撞机实验的探测器中留下的命中集合重建带电粒子的轨迹是一项具有挑战性的组合问题,并且计算量巨大。升级后的高亮度 LHC 的输出亮度增加了 10 倍,因此探测器环境将非常密集。传统技术重建粒子径迹所需的时间与径迹密度呈二次方以上关系。准确高效地将留在跟踪探测器中的命中集合分配给正确的粒子将是一个计算瓶颈,并促使人们研究可能的替代方法。本文提出了一种量子增强机器学习算法,该算法使用带有量子估计核的支持向量机 (SVM) 将一组三个命中(三元组)分类为属于或不属于同一条粒子径迹。然后将该算法的性能与完全经典的 SVM 进行比较。与经典算法相比,量子算法在探测器最内层方面的准确度有所提高,这对于轨迹重建的初始播种步骤至关重要。
摘要。量子傅里叶变换是量子密码分析的基本工具。在对称密码分析中,依赖于 QFT 的隐藏移位算法(如 Simon 算法)已用于对某些非常特殊的分组密码进行结构攻击。傅里叶变换也用于经典密码分析,例如 Collard 等人引入的基于 FFT 的线性密钥恢复攻击(ICISC 2007)。此类技术是否可以适应量子环境至今仍是一个悬而未决的问题。在本文中,我们介绍了一种使用 QFT 进行量子线性密钥恢复攻击的新框架。这些攻击大致遵循 Collard 等人的经典方法,因为它们依赖于对关联状态的快速计算,其中实验关联不是直接可访问的,而是编码在量子态的振幅中。实验相关性是一种统计数据,对于好的密钥,该统计数据预计会更高,并且在某些情况下,增加的幅度会相对于对密钥的穷举搜索产生加速。同样的方法还产生了一系列新的结构攻击,以及使用经典已知明文查询的二次方以外的量子加速的新例子。
量子时间动力学 (QTD) 被认为是近期量子计算机量子霸权的一个有前途的问题。然而,QTD 量子电路会随着时间模拟的增加而增长。本研究重点模拟具有最近邻相互作用的一维可积自旋链的时间动力学。我们证明了在用于模拟某些类一维海森堡模型汉密尔顿的时间演化的量子电路中存在反射对称性,这是通过量子杨-巴克斯特方程实现的,以及如何利用这种对称性来压缩和产生浅量子电路。通过这种压缩方案,量子电路的深度与步长无关,仅取决于自旋数。我们表明,对于本研究中研究的海森堡模型汉密尔顿量,压缩电路的深度严格是系统尺寸的线性函数。因此,压缩电路中的 CNOT 门数量仅与系统大小成二次方关系,这允许模拟非常大的 1D 自旋链的时间动态。我们推导出海森堡汉密尔顿量不同特殊情况的压缩电路表示。我们通过在量子计算机上进行模拟来比较并证明这种方法的有效性。
函数积分问题是众所周知的,人们针对许多不同的设置和对函数规律性的假设进行了研究。许多求积规则是已知的,例如 Newton-Cotes 规则或高斯求积规则。对经典计算机上确定性和随机性设置下的积分复杂性的研究始于 1959 年,当时 Bakhvalov [1] 考虑了 H¨older 类函数。[2] 研究了 Sobolev 类函数。在 [3, 4, 5] 中也可以找到关于经典计算机上积分复杂性的结果。除了经典计算之外,在量子计算机上计算的研究也取得了进展。处理量子计算的首批基础著作之一是 Shor [6] 的作品,他提出了离散因式分解的量子算法。该算法在输入的位数方面具有多项式成本,并且尚无已知的经典算法具有此属性。量子计算的第二个里程碑式的工作是 Grover [7] 的数据库搜索算法,该算法表明,对于该问题,量子计算机比传统计算机的速度提高了二次方。量子计算的优势还体现在其他离散问题上,例如计算平均值、中位数和分位数,参见 [8, 9, 10, 11]。此外,在量子环境下研究了许多连续问题。第一个考虑连续问题的量子复杂性的工作是 Novak [12] 处理 H¨older 类函数的积分。Heinrich [13] 研究了 Sobolev 类中的积分。其他问题,如最大化、近似、路径积分、求解常微分方程、寻找根
我们引入了一种量子算法来计算金融衍生品的市场风险。先前的研究表明,量子振幅估计可以使目标误差的衍生品定价速度成二次方加速,我们将其扩展到市场风险计算中的二次误差缩放优势。我们表明,采用量子梯度估计算法可以在相关市场敏感度(通常称为希腊值)的数量上带来进一步的二次优势。通过对实际感兴趣的金融衍生品上的量子梯度估计算法进行数值模拟,我们证明我们不仅可以成功估计所研究示例中的希腊值,而且实践中的资源需求可以明显低于理论复杂性界限所预期的水平。这一在金融市场风险计算中的额外优势降低了 Chakrabarti 等人估计的金融量子优势所需的逻辑时钟速率。 [Quantum 5, 463 (2021)] 提高了 ∼ 7 倍,从 50MHz 提高到 7MHz,即使对于按行业标准计算的希腊字母数量不多的(四个)也是如此。此外,我们表明,如果我们有足够的资源,量子算法可以在多达 60 个 QPU 上并行化,在这种情况下,实现与串行执行相同的总体运行时间所需的每个设备的逻辑时钟速率将约为 100 kHz。在整个工作过程中,我们总结并比较了可用于计算金融衍生品市场风险的几种不同的量子和经典方法组合。
许多量子算法都利用了辅助位,即用于在计算过程中存储临时信息的额外空闲位,这些信息通常在使用后恢复到其原始状态。辅助位有多种用途,例如减少总执行时间。在某些情况下,它们可以渐进地改善电路分解的深度。这凸显了量子程序中一个重要的时空权衡——我们以辅助位的形式花费额外的空间,以减少输入电路的深度。真正的量子机器的量子比特数量有限,因此充分利用它们以更快地计算更大、更有用的问题非常重要。最近,[1] 证明了高维量子比特可以作为某些电路元件中辅助位的替代品,效果很好。虽然量子电路通常以量子比特上的二进制逻辑门来表示,但在许多量子技术中,这种两级抽象是肤浅的。超导量子比特 [2] 和捕获离子 [3] 具有无限多种可能的状态,而较高的状态通常被抑制。不幸的是,通过访问这些状态,计算会受到更多种类的错误的影响,实际上错误类型的数量在计算基数中呈二次方增长 [1]。但是,如果正确使用量子比特状态,则获得的好处会超过这种成本。具体来说,我们在计算过程中暂时使用量子比特状态,同时保持电路的二进制输入和输出。
在快速发展的量子计算领域,Shor 和 Grover 算法是利用量子力学解决超出传统计算能力的问题的杰出成就。本文对 Shor 算法(以分解大合数而闻名)和 Grover 算法(擅长搜索非结构化数据库和优化问题解决)进行了比较分析。该研究探索了理论基础、实际实施和现实影响。Shor 算法利用量子傅里叶变换和模块化算法,有望使分解速度呈指数级加快,影响 RSA 等传统加密系统。Grover 算法采用振幅放大和量子预言机操作,使搜索速度加快了二次方,其价值超越了素数分解。Shor 算法使用 IBM Qiskit 实现,专注于分解,展示量子相位估计和周期查找。Grover 算法适用于适合素数分解的数据集搜索。方法包括量子电路设计、参数调整和量子硬件模拟。结果评估了执行时间、准确性和可靠性,突出了优势和局限性。Shor 算法在特定问题上表现出色,但面临可扩展性问题。Grover 算法用途广泛,但受到二次加速的限制,应用范围广泛。讨论包括加密含义、对新协议的需求以及 Grover 在数据库搜索、优化和机器学习中的应用。未来的研究旨在解决量子比特保真度和门错误等硬件挑战,以提高量子算法的稳健性。这项研究强调了量子算法的变革潜力,指导了量子计算应用和理论的进步。