电子诱导的电子发射通常用二次电子产额 (SEY) 来量化,有时也称为总电子产额 (TEY)。低 SEY 材料或表面旨在减少航天器和卫星的表面充电 [1,2] 以及减轻粒子加速器中电子云的形成。[3–7] 几十年来,为了满足不断发展的技术需求,人们在元素材料表面和化合物中 [7–17] 深入研究了二次电子产额的一次电子能量依赖性以及发射电子的动能分布。对于许多应用,低于 1 的 SEY 最大值足以避免撞击电子的级联倍增。然而,对于其他解决方案而言,进一步降低 SEY 可能会有所帮助,以抑制可能产生背景噪声或使测量信号恶化的反射、背散射和二次电子,例如在电子收集器中,用于测量超高真空 (UHV) 中的低电子电流或用于基于电离的压力计。[18,19]
采用多目标遗传算法 (MOGA) 优化方法,对具有五个电极和两个目标函数的静电电子光学系统的设计进行了优化。考虑的两个目标函数是固定图像平面中一次电子束的最小探针尺寸和镜头内探测器平面上的最大二次电子检测效率。耗时的步骤是计算系统电位。有两种方法可以做到这一点。第一种是使用 COMSOL(有限元法),第二种是使用二阶电极法 (SOEM)。前者使优化过程非常缓慢但准确,而后者使其快速但准确性较低。提出了一种全自动优化策略,其中基于 SOEM 的 MOGA 为基于 COMSOL 的 MOGA 提供输入系统。这加速了优化过程并将优化时间缩短了至少约 10 倍,从几天缩短到几个小时。典型的优化系统的探针尺寸为 11.9 nm,二次电子检测效率为 80%。这种新方法可以在具有一个或多个目标函数和多个自由变量的静电透镜设计中实现,是一种非常高效、全自动的优化技术。
SEM 使用仪器内的探测器收集数据。这些探测器可以安装在样品室内、电子发射环处或电子透镜旁边。不同仪器的探测器类型各不相同。每种类型的探测器可以具有不同的理想条件(高或低真空、高或低 keV、快或慢扫描速度)并可以接收不同的信号类型。一些探测器专门用于二次电子 (SE) 信号,而另一些则专注于收集背散射电子 (BSE)。为了更好地了解可用的探测器,我们在第 3 页创建了一个方便的参考图表。了解可用的探测器以及探测器的选择和仪器设置如何影响数据有助于改进测量并创建完整的样品图像。
1) 艾哈迈德·A·卡卡什 (Karkash)A .(2024) 金属块体、表面和纳米结构的分子动力学研究 2) Diaz, Leopoldo III (2022) 过渡金属表面的第一性原理研究 3) Alsalmi, Omar (2019) 高温二元 Ti-Al 相图的第一性原理研究 硕士委员会主席 1) Aslan, Ali N. (2023) 氧-碳表面污染下 Ag 和 Au 的计算二次电子发射分析 2) Alsharari, Sami (2023) 具有不同碳覆盖率的 Cu (110) 表面的理论研究 3) Vincent III, Timothy Mark (2021) Si 中的 Cu 和 Ag:难以捉摸的 Cu0 和 *Cu0 缺陷 4) Brown, Madeline (2021) 清洁和氢层镍表面的二次电子发射5)Mulherin,Olivia(2017)AuCd形状记忆合金的弹性和热性能的理论研究
扫描电子显微镜 (SEM) 是用于对材料的微观结构和形态进行成像的常用方法之一。在 SEM 中,低能电子束撞击材料并扫描样品表面。当光束到达并进入材料时,会发生各种相互作用,导致样品表面或附近发射光子和电子。为了生成图像,使用不同类型的检测器检测由电子-样品相互作用产生的接收信号,具体取决于所使用的 SEM 模式。有各种 SEM 模式可用于表征材料,包括生物材料。B. X 射线成像、二次电子成像、背散射电子成像、电子通道、俄歇电子显微镜。
图 1:(a) GaAs 核(蓝色)- Ge 壳(红色)NW 示意图,具有受控晶相:纤锌矿 (WZ)、闪锌矿 (ZB),具有堆垛层错 (SF) 区域。通过 RHEED 原位监测样品,以获得有关 GaAs/Ge NW 晶体结构的实时信息。在 WZ GaAs 生长期间(b)29 分钟(c)35 分钟和六方 Ge 生长期间(d)3 分钟(e)10 分钟,沿 [1-10] 方位角记录的 RHEED 图案。WZ 点以白色箭头突出显示。(f) 45° 倾斜 SEM 图像(二次电子对比度)显示 GaAs/Ge NW。比例尺为 1 m。
PELIICAEN(纳米级离子注入控制和分析研究平台)装置是一种独特的设备,它拥有所有的原位超高真空设备(聚焦离子束 (FIB) 柱、二次电子显微镜 (SEM)、原子力和扫描隧道显微镜 (AFM/STM)),以及它在材料上的纳米结构性能。该装置最近配备了自己的电子回旋共振离子源、使用气动振动绝缘体的新型位置控制平台和快速脉冲装置。它的性能得到了大幅提升,可以选择多种离子,离子注入深度可调至几百纳米,图像分辨率低至 25 纳米,样品上的离子束尺寸低至 100 纳米。凭借所有这些设备,PELIICAEN 装置在执行和分析离子注入和表面改性方面处于国际前沿。
简介 从根本上说,扫描电子显微镜 (SEM) 图像的质量取决于所检测到的电子的质量。尽管传统的 SEM 设计采用 Everhardt-Thornley 探测器 (ETD) 来探测二次电子 (SE),采用镜头下探测器来探测背散射电子 (BSE),但先进的 SEM 可以配备多个镜头内探测器。由于这些探测器可以收集 SE 和 BSE 信号,因此可以根据观察到的电子的能量和/或发射角度对其进行分类。本文介绍了 Thermo Scientific™ Apreo SEM(带 NICol 镜筒)和 Scios™ DualBeam 中的 Thermo Scientific™ Trinity™ 检测系统。它由三个探测器组成:两个镜头内探测器(T1、T2)和一个镜筒内探测器(T3)。这种独特的系统提供了无与伦比的 SE 和 BSE 对比度以及有关样品成分、形态、表面特征等的详细信息。