第二次谐波生成(SHG)是一个非线性光学过程,其中两个光子连贯地组合成两个光子的能量的两倍。的效果SHG。在这里,我们显示了反转对称晶体中非线性光学过程的调整。这种可调节性基于双层MOS 2的独特性能,该特性显示出强烈的光学振荡器强度,但也显示了层间激子的共振。当我们通过改变激光能将SHG信号调谐到这些共振上时,SHG振幅通过几个数量级增强。在谐振情况下,双层SHG信号达到的幅度与单层的两个共振信号相当。在施加的电场中,可以通过鲜明的效应来调节层间激子能量。因此,取消了层间激子退化性,并通过我们的模型计算得出的良好再现了两个数量级,进一步增强了双层SHG响应。
二次谐波生成:半导体电介质接口的强大非破坏性表征技术 Irina Ionica a 、Dimitrios Damianos a 、Anne Kaminski-Cachopo a 、Danièle Blanc-Pélissier b 、Gerard Ghibaudo a 、Sorin Cristoloveanu a 、Lionel Bastard a 、Aude Bouchard a 、Xavier Mescot a、Martine Gri a、Ming Lei c、Brian Larzelere c 和 Guy Vitrant aa Univ。格勒诺布尔阿尔卑斯,CNRS,格勒诺布尔-INP,IMEP-LAHC,38000 格勒诺布尔,法国 b INL-UMR 5270,里昂国立应用科学学院,7 avenue Jean Capelle,69621 维勒班,法国 c FemtoMetrix,1850 East Saint Andrew Place,加利福尼亚州圣安娜 92705,美国。二次谐波产生 (SHG) 被证明是一种非常有前途的介电体-半导体界面表征技术,因为它灵敏、无损,可在晶圆处理的不同阶段直接应用于晶圆。该方法基于非线性光学效应,测量包含介电体-半导体界面处“静态”电场的信号,该信号与氧化物电荷 Q ox 和界面态密度 D it 直接相关。从 SHG 测量中提取 Q ox 和 D it 的一般方法需要 (i) 根据通过经典电学方法获得的参数进行校准和 (ii) 建模以捕捉影响 SHG 信号的光传播现象。在本文中,我们基于对如何利用 SHG 进行半导体电介质表征的最新进展的回顾来讨论这些问题。简介半导体上电介质堆栈在微纳电子、光伏 (1)、图像传感器 (2)、生物化学传感器等许多应用领域的设备中无处不在。在每种情况下,界面的电质量对设备的性能都有很大的影响。通常使用两个参数来确定这种界面的电质量:固定氧化物电荷密度 Q ox 和界面态密度 D it 。大多数时候,这些参数是通过电测量(例如电流、电容、噪声 (3))获取的,然后采用适当的提取方法并在专门制造的测试设备上实施(例如:金属氧化物半导体 - MOS 电容或晶体管)。一些其他方法可以直接在晶圆级实施,而无需任何额外的测试设备制造步骤,例如:半导体的电晕-开尔文特性 (4)、通过光电导或光致发光衰减测量进行的载流子寿命提取 (5)。除了无需任何额外步骤即可直接在晶圆上进行探测的可能性之外,选择最适合的测量方法的标准还包括灵敏度、非破坏性、区分 D it 和 Q ox 的能力、提供高空间分辨率的能力。可以满足所有这些标准的最新技术是二次谐波产生 (SHG) (6),基于非线性光学效应。
非线性光学频率转换与非线性介质相互作用以生成新频率,是现代光子系统中的关键现象。然而,这些技术的主要挑战在于难以调整在给定材料中驱动这种影响的非线性电敏感性。作为一种对光学非线性的动态控制,这很大程度上仍然局限于研究实验室,从而将其实际用作用作光谱工具。在这项工作中,我们旨在通过探索两种潜在的机制来推动具有可调非线性响应的设备的开发,以在二维材料中对二阶光学非线性进行电力。具体来说,我们考虑了两种配置:在第一个材料中,材料本质上并未表现出第二谐波生成(SHG),但这种反应是由外部场引起的;第二,外场会诱导已经表现出SHG的材料中的掺杂,从而改变了非线性信号的强度。在这项工作中,我们使用实时的AB-Initio方法研究了这两种配置,但在平面外的外部场上,包括屏蔽的电子电子相互作用中掺杂引起的变化的影响。然后,我们讨论当前计算方法的局限性,并将我们的结果与实验测量进行比较。
摘要 本研究介绍了专门设计用于放大二次谐波产生 (SHG) 信号的先进等离子体纳米粒子的开发。这种创新方法的核心在于金和银纳米粒子与 DNA 的战略整合,这种协同作用经过精心设计,可充分利用 DNA 卓越的非线性光学特性以及金和银的等离子体共振。与传统的等离子体材料(如石墨烯、硅和金属本身)不同,我们的设计不仅利用 DNA 作为结构元素,还利用 DNA 作为 SHG 的动态增强剂,因为它在纳米尺度上具有无与伦比的光子吸收和相互作用能力。通过先进的基于 DNA 的建模和模拟,我们引入了一种新颖的纳米粒子架构,该架构经过优化,可超越当前的 SHG 效率基准,而无需结合气体传感功能。这一突破不仅标志着非线性光学领域的重大飞跃,而且为生物分子成分在增强等离子体现象中的应用开辟了新途径。关键词:等离子体、纳米粒子、DNA、二次谐波产生、SHG、非线性光学简介在非线性光学领域中,二次谐波产生 (SHG) 的探索呈现出丰富的科学研究和技术创新前景。作为非线性光学过程的基础,SHG 能够将两个相同频率的光子合并为一个频率加倍的光子,从而有效地使光频率加倍,从而引起了人们的兴趣。SHG 的这种独特属性对广泛的应用领域具有关键意义,从增强激光源能力到革命性的成像技术。它有可能在显微镜中提供卓越的分辨率,促进对复杂分子结构的研究,并推动突破性光子器件的创造,这凸显了它在科学界引起的巨大关注[1-5]。
*通讯作者:Muyi Yang,固态物理研究所,弗里德里希·席勒大学Jena,Max-Wien-Platz 1,07743 Jena,德国;弗里德里希·席勒(Friedrich Schiller)大学Jenafriedrich Schiller大学耶拿(Jena),Albert-Einstein-STR的ABBE光子学中心应用物理学研究所。15,07745德国耶拿;和Max Planck Photonics,Hans-Knöll-Straße1,07745德国Jena,电子邮件:muyi.yang@uni-jena.de。https://orcid.org/0000-0002-1738-4536 Maximilian A. Weissflog,应用物理研究所,Abbe Photonics,Friedrich Schiller University,Albert-Einstein-STR。15,07745德国耶拿;以及汉斯·斯特拉斯(Hans-Knöll-Straße)1,07745德国耶拿(Jena),麦克斯·普朗克(Max Planck)光子学院。https://orcid.org/0000-0002-3091-1441 Zlata Fedorova,固态物理研究所,弗里德里希·施莱尔·史列尔(Friedrich Schiller Uni-Cersity Jena),Max-Wien-Platz 1,07743 Jena,德国Jena,德国;和应用物理研究所,Abbe光子学中心,弗里德里希·席勒大学(Friedrich Schiller)大学耶拿,阿尔伯特·恩斯坦 - 斯特(Albert-Einstein-STR)。15,07745德国耶拿,安吉拉·贝雷达(Angela I. Barreda),固态物理研究所,弗里德里希·席勒(Friedrich Schiller Uni-Cersity),耶拿(Jena),马克斯 - 韦恩·普拉茨(Max-Wien-Platz)1,07743德国耶拿(Jena);弗里德里奇(Friedrichschilleruniversityjena),阿尔伯特·埃因斯坦(Albert-Einstein-STR),弗里德里希(Friedrichschilleruniversityjena)应用物理学研究所。15,07745德国耶拿;以及AVDA马德里大学卡洛斯三世分校的展示和光量应用程序。de la大学,30岁,莱加纳,28911马德里,西班牙,斯特凡·伯纳,应用物理研究所,阿贝·光子学院,弗里德里希·席勒大学耶拿,阿尔伯特·史特恩·斯特林。15,07745德国耶拿;和麦克斯·普朗克(Max Planck)摄影学院,汉斯·斯特拉斯(Hans-Knöll-Straße)1,07745德国耶拿(Jena)15,07745 Jena,Ger-许多Falk Eilenberger和Thomas Pertsch,Applied Physics研究所,Abbe Photonics,弗里德里希·席勒大学Jena,Albert- Einstein-STR。15,07745德国耶拿; Max Planck Photonics,Hans-Knöll-Straße1,07745 Jena,德国;和弗劳恩霍夫(Fraunhofer)应用光学和精密工程IOF,Albert-Einstein-Straße7,07745 Jena,德国伊萨贝尔·斯塔德(Isabelle Staude),固体状态研究所,弗里德里希·施莱尔·施莱尔·席勒(Friedrich Schiller Uni-Versity)弗里德里奇(Friedrichschilleruniversityjena),阿尔伯特·埃因斯坦(Albert-Einstein-STR),弗里德里希(Friedrichschilleruniversityjena)应用物理学研究所。
25. Gnatchenko, SL, Kachur, IS, Piryatinskaya, VG, Vysochanskii, YM 和 Gurzan, MI, 反铁磁 MnPS 3 光吸收光谱的激子-磁振子结构。低温物理。37,144–148(2011 年)。
肌球蛋白移动真核生物的肌肉,是一种微小的分子运动[1]。它通过消耗三磷酸腺苷(ATP)来产生力并进行机械工作。作为线性电动机,它可以通过活细胞内的细胞骨架的轨道样肌动蛋白丝或微管进行运动。以这种方式,亚细胞结构,以及较大的单位(例如细胞或生物)可以以定向方式移动[1,2]。使用基因工程方法,已经有可能产生向后移动的肌球蛋白纳米运动[3]。X射线结构分析和动力学研究等方法进一步阐明了具有技术兴趣的运动蛋白的有序纳米结构的自我组织。对于分子医学,了解分子线性运动和组织中稳定结构之间的结构关系也很重要。骨骼肌由伸长的纤维细胞和肌纤维沿整个长度平行排列[1]组成。肌原纤维包含纵向肉瘤,其肌动蛋白肌膜的高阶和肌球蛋白蛋白具有收缩。骨骼肌的众所周知的横向条纹是由于肌纤维在肌肉纤维中的平行排列而产生的(图1)。几种肌肉纤维沿相同方向捆绑在一起。这些由细胞外基质的结构蛋白(尤其是胶原蛋白纤维)组织。从胶原蛋白家族的大而异构的群体中,发现大部分是纤维状胶原蛋白。但是这种变化可能具有很大的潜力。由于非中心对称结构,胶原蛋白和肌球蛋白的特异性显微成像是可能的[4,5,6,7,8]。使用聚焦激光辐射的超短脉冲会导致瞬态高功率密度和二阶频率加倍(第二次谐波产生,SHG)[7,8]。通过在近红外范围内使用激发波长,第二个谐波渗透到组织中,肌肉组织可以在三个维度中无损地映射(图2)。SHG极化法可用于区分肌球蛋白和胶原蛋白,并进一步胶原蛋白纤维的方向[7,8,9]。可以通过对向后信号进行评估来获得进一步的对比信息。到目前为止,几乎没有任何方法可以调节SHG生成波长以区分肌球蛋白和胶原蛋白纤维[8,9]。但是,一些矛盾的结果要求通过评估光谱信息进行多模式研究。到目前为止,在生物样品中的第二次谐波中,尚未证明完全kleinman对称性的假设和SHG效率的单调降低。相反,最近的研究表明了一种复杂的行为,更明显地使用向后信号而不是前向信号[8,9]。
具有连续体束缚态的硅槽形纳米立方体高效二次谐波产生 方慈哲,杨奇宇,袁清晨,顾林鹏,甘雪涛*,邵瑶,刘燕,*韩根泉,郝越 方聪,杨倩,刘英教授,韩刚教授,郝英教授 西安电子科技大学微电子学院宽禁带半导体技术国家重点实验室,西安 710071,中国 电子邮件:xdliuyan@xidian.edu.cn 袁倩,顾琳,甘雪教授 西北工业大学物理科学与技术学院,工业和信息化部光场操控与信息获取重点实验室,陕西省光信息技术重点实验室,西安 710129,中国 电子邮件:xuetaogan@nwpu.edu.cn Y.邵 国家电网上海能源互联网研究院,上海市浦东新区李冰路251号,201210,中国 刘宇 教授 智能芯片与器件研究中心 浙江省重点实验室,杭州,311121,中国 关键词:二次谐波产生,连续体中的束缚态,硅,介电纳米结构 具有中心对称性的光学材料,例如硅和锗,不幸的是
这是预先发布的版本。这是Publication Wen,F。,Shan,S。,&Cheng,L。的公认版本(2021)。第二次谐波剪切水平波对呼吸裂纹检测的免疫力。结构性健康监测。电视©作者2021可用athttps://doi.org/10.1177/14759217211057138。