高温下的有效隔热对合适的材料提出了严格的要求。低密度、多孔无机结构(孔径在亚微米范围内)对于控制热传导尤其有用。同时,必须抑制热辐射,这取决于成分的光学特性。在这里,作者展示了在高达 925°C 的温度下,颗粒二氧化硅材料从传导主导到辐射主导的热传输机制的转变的直接观察结果。提供了通过块状二氧化硅以及实心和空心二氧化硅颗粒的辐射传输的详细分析。高温下的光学透明度是驱动力,而表面波模式几乎没有贡献,特别是在绝缘颗粒堆积的情况下。现有的激光闪光分析框架得到扩展,以通过两个独立的扩散传输模型定性地描述辐射和传导热传输。该分析有助于更好地理解在高工作温度下制造和分析高效隔热材料所面临的挑战,因为需要控制多种传热机制。
这项工作是由美国能源公司联盟(Alliance for of Contery No.DE-AC36-08GO28308。由美国能源部高级研究项目局(ARPA-E)提供的资金。本文中表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了不可限制的,有偿的,不可撤销的,全球范围内的许可,以出版或复制这项工作的已发表形式,或允许其他人这样做,以实现美国政府的目的。
DR。 Mauro Cesar terence -CTO毛罗博士拥有Presbiteriana Mackenzie大学(UPM)的化学学位,博士学位,博士学位。以及圣保罗大学的核技术博士后。 他是UPM的教授25年,在那里他协调了材料工程和纳米技术的研究生课程。 他的研究着重于聚合物,电离辐射,纳米材料(石墨中的石墨烯和氧化石墨烯)和材料表征。 他参与了该项目的创建,并且是UPM的MackGraphe(石墨烯和纳米材料研究中心)的成员。。DR。 Mauro Cesar terence -CTO毛罗博士拥有Presbiteriana Mackenzie大学(UPM)的化学学位,博士学位,博士学位。以及圣保罗大学的核技术博士后。他是UPM的教授25年,在那里他协调了材料工程和纳米技术的研究生课程。他的研究着重于聚合物,电离辐射,纳米材料(石墨中的石墨烯和氧化石墨烯)和材料表征。他参与了该项目的创建,并且是UPM的MackGraphe(石墨烯和纳米材料研究中心)的成员。他参与了矿业项目Noovamineração和AquanitásHolding。此外,毛罗(Mauro)还从CNPQ - 巴西获得了他对技术发展和创新的贡献。
cai li,1个feng pei,2 na xiao 1和xiao-fei Zeng 1,2,*抽象的空心二氧化硅纳米球(HSNS)由于其低折射率而被广泛用作抗反射涂层。但是,很难使用简单的混合方法将它们合并到光学聚合物矩阵中,以增强可见的传输。瑞利散射是由其较大的粒径和集聚问题引起的,这会使光学聚合物的阴霾和透明度更糟。在此,直径约为20 nm的超小HSN通过反向微乳液方法合成。通过高重力技术在旋转的床反应器(RPB)中实现了扩展制剂,然后通过简单的溶液混合方法制造了透明的聚乙烯醇(PVA)/HSNS纳米复合材料。HSN的内腔大小约为8 nm,折射率为1.342。通过使用不同的表面修饰符,它们可以分别在水和有机溶剂中单分散。制备的PVA/HSNS纳米复合材料具有超高的透明度和低阴霾,因此HSN均匀地分散在PVA矩阵中,而没有任何聚合,这在光学材料和设备中具有很高的应用前景。
化学工艺工程研究所,阿利坎特大学,阿利坎特大学,E-03080,西班牙B化学和生物技术天线实验室实验室EcnicadeManabí,Portoviejo,130104,厄瓜多尔D大学水与环境科学研究所,阿利坎特大学,阿利坎特大学,E-03080,西班牙和自然科学系,瑞典中部,瑞典大学,霍尔姆加坦10号,85170,桑德斯瓦尔,雪松,雪松大学Ecotec,KM,KM。13.5 Samborond´ on,Samborond´ on,EC092302,厄瓜多尔G化学系,科学学院,国王沙特大学,P.O。 div>框2455,利雅得,11451,沙特阿拉伯
本作品部分由美国国家可再生能源实验室撰写,该实验室由可持续能源联盟有限责任公司运营,为美国能源部 (DOE) 服务,合同编号为 DE-AC36-08GO28308。资金由美国能源部高级研究计划局 - 能源 (ARPA-E) 以及美国能源部能源效率和可再生能源办公室 (EERE) 下的 Gen3 CSP、太阳能技术办公室 (SETO) 提供。本文表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留;出版商在接受文章发表时,即承认美国政府保留非独占的、已付费的、不可撤销的全球许可,可以出于美国政府目的出版或复制本作品的已出版形式,或允许他人这样做。
以其独特的特性而闻名,例如较小的导热率,高孔隙率和最小的电介质常数,Aerogels引起了各种应用的关注,尤其是在纺织品中。硅胶以其出色的热隔热能力而闻名,由于其低密度以及高热和声学绝缘性能,因此对传统隔热材料提供了潜在的改进。涉及硅烷氧化物的水解和冷凝的溶胶 - 凝胶过程,用于合成二氧化硅气凝胶,然后进行超临界干燥以保留其多孔结构。最近的进步探索了将二氧化硅气凝胶掺入纺织品和纤维中,以增强其热绝缘层,同时解决与耐用性和成本相关的挑战。的方法,例如湿反应旋转,同轴湿旋和静电纺丝,以生产具有不同特性的气冰纤维。例如,硅胶纤维已用于复合织物中,以提高柔韧性和机械强度,同时保持高隔热性能。还研究了带有硅胶的涂料纺织品,以创建轻质,高性能的服装热绝缘材料。此外,通过将气凝胶整合到纤维底物中产生的硅胶毯为工业和航空航天应用提供了有效的绝缘层。最近的研究进一步凸显了生产具有针对特定应用(例如防热和水分管理)的特性量身定制特性的基于硅胶的织物的进步。总体而言,正在进行的研究旨在优化气凝胶材料,以在纺织品和保护服装中进行更广泛的使用,从而应对性能和成本效益挑战。
工作场所的尘埃是损害工人健康的职业疾病危害的主要原因之一。灰尘中的游离二氧化硅是造成菌丝症的主要原因,因此分析灰尘中的自由二氧化硅的含量是职业健康监测的重要组成部分。游离二氧化硅是指未与金属或金属氧化物结合的自由状态。在工作场所中,粉状含量大于10%的粉末称为二氧化硅灰尘。游离二氧化硅可以分为三种类型;结晶,隐态和无定形二氧化硅根据其晶体结构。在中国,工作场所尘埃中自由二氧化硅的定量确定通常遵循GBZ/T192.4- 2007年标准方法“确定工作场所第4部分空气中灰尘中的自由二氧化硅含量”。 “该测量标准包括确定游离二氧化硅的几种方法,包括焦磷酸法,红外光谱和X射线衍射法。焦磷酸方法可以确定自由二氧化硅的总量,但是它是一种手动方法,因此遵守分析师的化学分析技能,既耗时又繁琐。根据GBZ/T192.4-2007标准,红外光谱仪可用于建立α-SIO2(晶体)标准曲线,然后替换由样品测量的吸光度值以获得其定量值。将红外方法与焦磷酸方法进行比较,该操作要简单得多,无需溶剂,分析是快速准确的,并且是更流行的方法。
图 3:(a) Ti64+C、(b) Ti64+C 和 Ti64 界面以及 (c) Ti64 的微观结构。(d) Ti64+C+LP 的 HAZ 微观结构、(e) HAZ 和 Ti64+C 界面以及 (f)