然后,该串联CO 2电解系统用于通过电农业从CO 2衍生的乙酸盐产生可持续食品。在数千年中,人类一直依靠光合作用来满足我们的热量需求,以相对较低的太阳能效率(〜1%),这导致了今天地球可居住的土地的一半用于农业。将通过工程粮食作物来绕过光合作用,并利用乙酸乙酸酯来提供更有效的全球粮食系统的根本性重新构想,以提高醋酸乙酸盐的异性生长,从而通过一定的数量级来提高太阳能到作物的效率。进行分析以证明这些效率提高如何导致美国农业土地使用情况下的94%降低,从而使美国近一半的一半以促进自然碳固存的努力。也可以通过与精确发酵技术耦合CO 2电解来提高我们的食品系统效率,以生产动物蛋白,而无需高效和资源密集的动物农业。
摘要:温室气体排放的激增主要是以工业革命刺激的二氧化碳(CO 2)的形式,已经超过了400 ppm的临界阈值,助长了全球变暖,海洋酸性和气候变化。为减轻这些排放的不利影响并将全球温度升高到2°C以下,到2050年达成了零排放的雄心勃勃的目标。当前的最新技术,例如胺擦洗,由于其高能量需求,对腐蚀的易感性以及其他操作挑战而存在问题。由于缺乏合适的技术以及能源需求不断升高的原因,仍然有大量的碳二氧化碳被释放到大气中。因此,迫切需要开发替代技术,这些技术提供高效率,低能消耗,成本效益的安装和运营。在这篇评论中,我们深入研究了有准备应对这些挑战的新兴技术,与现有的市售解决方案相比,评估了它们的成熟度。此外,我们还简要概述了旨在商业化这些创新技术的持续努力。
f igure 1。b ioenergy与C Arbon C Apture and S Torage(Beccs)(C Onsoli,2019年).....................................................................................................................................................................................................................................................................................................................................................................HPC安装(KKV8工厂)(W retborn,n。d。)....................................................... 12 F IGURE 3.c Arbon Capture Technologies(D Ziejarski等,2023).......................................................................................................................................................................................................................................................................................................................................................................................................................................................c arbon捕获和利用(CCU)(D Ziejarski等,2023)B IOENERGY WITH CARBON CAPTURE STORAGE (Q UANG ET AL ., 2023) .............................. 14 F IGURE 6.c Arbon捕获和矿物碳化(CCMC)(Q Uang等,2023)C ARBON CAPTURE TECHNOLOGIES (CCS) (Q UANG ET AL ., 2023) ..................................... 15 F IGURE 8.p re-燃烧捕获(O Labi等,2022).................................................................................................................................................................................................................................................................................................................................................................................................................................................................O XY - FUEL COMBUSTION CAPTURE (O LABI ET AL ., 2022) .................................................... 17 F IGURE 10.P OST - COMBUSTION CAPTURE (O LABI ET AL ., 2022) ......................................................... 18 F IGURE 11.A BSORBER AND S TRIPPER C OLUMNS (O LABI ET AL ., 2022) ............................................. 21 F IGURE 12.p acked-床反应堆(I.I.T.D,n。d。)在s祈祷反应堆(W et s brubbers,n。d。)........................................................................... 22 F IGURE 14.E XPERIMENTAL PROCESS WORKFLOW ................................................................................... 27 F IGURE 15.e xpermentiment设置 - up ................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 28 f igure 16。A BSORBER SPRAY TOWER ..................................................................................................... 29 F IGURE 17.H OLLOW CONE (GP, 2023) .................................................................................................... 30 F IGURE 18.s祈祷角(GP,2023)...........................................................................................................................................................................................................................................................................................................................................................................................................................N OZZLE (UM75) (S PRAY E XPERTS , 2023) ....................................................................... 30 F IGURE 20.E FFECT OF 20% VOL CO 2 ...................................................................................................... 36 F IGURE 21.e 40%vol Co 2 .............................................................................................................................................E FFECT OF 10% WT K 2 CO 3 .................................................................................................... 39 F IGURE 23.E FFECT OF 20% WT K 2 CO 3 .................................................................................................... 40 F IGURE 24.E FFECT OF 298K .................................................................................................................... 42 F IGURE 25.E FFECT OF 313,5K ................................................................................................................ 43 F IGURE 26.E FFECT OF INLET GAS ............................................................................................................ 44 F IGURE 27.E FFECT OF INLET GAS ............................................................................................................ 45 F IGURE 28.E FFECT OF SOLVENT VOLUME 1500 ML .................................................................................. 47 F IGURE 29.E FFECT OF SOLVENT VOLUME 750 ML .................................................................................... 48 F IGURE 30.CO 2 LOADING : 20% VOL CO 2 , 20 WT %K 2 CO 3 , 298K ............................................................ 50 F IGURE 31.CO 2 LOADING : 10% VOL CO 2 , 20 WT %K 2 CO 3 , 313.5K ......................................................... 51 F IGURE 32.CO 2 LOADING : 20% VOL CO 2 , 10 WT %K 2 CO 3 , 313.5K ......................................................... 52 F IGURE 33.CO 2 LOADING : 40% VOL CO 2 ( FLOW RATE 1.67), 20 WT %K 2 CO 3 ........................................ 53 F IGURE 34.CO 2 LOADING : 750 ML ............................................................................................................ 54
CO 2管道是解决气候变化所需的重要基础设施。在全球范围内,需要通过将CCS和基于技术的基于技术的二氧化碳去除(CDR)捕获6700亿吨CO 2(Gigatonnes,GTCO 2),以将全球变暖限制为1.5°C(IPCC,2022B)。CCS和CDR项目可以使用CO 2管道作为将捕获的CO 2运输到位置以永久存储的有效方法,同时避免了由运输替代方案(铁路或卡车)发出的其他CO 2排放。最近的研究估计,到2050年,美国当前的CO 2管道运输网络必须增加四到18时的大小才能达到我们的气候目标(Great Plains Institute,2020; Larson等,2021; US DOE,2023b; 2023b; Wallace等,2015)。
这些领域的工作成果在第 3 至 8 章中给出。附录 A 包括对褐煤燃烧 IGCC 发电厂中 C02 去除的技术和经济优化的详细研究。本报告制作过程中合作伙伴之间的联系描述如下。第 1 章由 BGS 汇编,收集了所有参与组织的工作成果。第 2 章由 BGS 撰写。第 3 章由 CRE Group Ltd 编写,收集了 CRE Group Ltd、RWE AG 和 Statoil 的工作成果。第 4 章主要由 TNO 撰写,包括 TNO、BRGM、RWE DEA AG、IKU Petroleum Research 和 BGS 对各个国家的工作成果。第 5 章由 TNO 撰写,BGS 和 BRGM 也参与其中。第 6 章由 IKU Petroleum Research 汇编,收集了 IKU Pwetroleum Research 和 TNO 的工作成果。第 7 章由 BRGM 汇编,收集了 BRGM 和 BGS 的工作成果。第 8 章由桑德兰大学撰写。该项目由英国地质调查局的 Sam Holloway 博士负责协调。
The basics of carbon credits ...............................................................................................................6 What is a CDR?........................................................................................................................................7 Not all carbon credits are the same.........................................................................................7 CO 2 removals are critical to reach net zero..........................................................................9 How does CO 2 removal work?........................................................................................................11 Common removal techniques ................................................................................................ 12
电力部门已从燃煤发电转换为天然气发电。该部门二氧化碳排放量下降的约三分之二是由于从煤炭转换为天然气,约三分之一则来自不排放二氧化碳的可再生能源发电量的增加。自 2005 年以来,燃煤发电量下降了 55%。其中约 70% 的降幅被天然气发电量的增加所抵消,天然气发电量的二氧化碳排放量约为煤炭的一半。与此同时,风能和太阳能发电——几乎占可再生能源发电量增长的全部——合计占总发电量的不到 1% 增加到近 13%。发电平均成本的变化——由于天然气价格下降和可再生能源发电成本降低——是发电量占比发生变化的原因。