背景和目标:通常用于键合的正畸粘合剂可以显着增强细菌生物膜。纳米颗粒具有强大的抗菌特性,而不会损害键强度。因此,本研究的目的是评估壳聚糖和TiO2 NP与正畸底漆对剪切键强度混合的影响。材料和方法:对于这项系统的综述和荟萃分析研究,搜索了Medline(PubMed和Ovid),Science和Scopus等国际数据库,直到2024年10月使用与研究目标相关的关键字。Stata/MP。V17软件用于分析数据。结果:本研究包括十二项体外研究,总样本量为684个人类前美磨牙。SBS得分的平均差异在1%至5%的Chitosan NPS组和对照组之间为-1.11 MPa(MD,-1.11 MPA; 95%CI,-2.27,0.04; P = 0.16)和5.08 MPA(MD,-5.08 MPA; -5.08 MPA; 95%CI; 95%CI,-7.80,-7.80,-7.80,-7.80,-7.80; p.55; p.55; p.55; p.55; p.55; p;比较了1%TiO2 NPS组和对照组之间的平均SBS差异(MD,-0.43 MPA; 95%CI,-0.99,0.12; P = 0.13)。
纳米结构二氧化钛 (NS-TiO2) 是一种无毒、环保、廉价、高效的功能材料,具有广泛的应用范围 [8–11]。在过去的十年中,纳米结构 TiO2 可以具有化学计量或非化学计量组成,作为一种有前途的高效光催化剂,用于合成符合绿色化学原则的有机化合物,引起了世界各地研究人员的越来越多的关注 [12–17]。如今,纳米结构材料由于其一些独特的特性而成为一个重要的研究领域。在所有过渡金属氧化物中,TiO2 纳米结构是现代科学技术中最美观的材料 [1]。纳米 TiO2 纳米结构包括二氧化钛纳米颗粒 (TiO2-NPs) 和二氧化钛纳米管 (TNTs) [18]。随着纳米技术的发展,NS-TiO2 找到了许多应用。纳米二氧化钛(nano-TiO2)已广泛应用于环境保护、化妆品、抗菌剂、自清洁涂料和癌症治疗、太阳能电池、光催化和复合纳米填料[19–21]。由于其独特的尺寸和高比表面积,纳米 TiO2 比二氧化钛具有更稳定的物理和化学性质。此外,纳米 TiO2 具有良好的抗菌活性、良好的生物相容性和独特的光催化活性[24],在生物医学领域具有巨大的应用潜力[22, 23]。研究表明,纳米结构 TiO2 可引发良好的分子反应和骨整合,骨形成效果优于非纳米结构材料[25–27]。所有这些形式的 NS–TiO2 的独特物理化学性质使该材料在许多应用中具有光明的未来。已经发表了一些关于二氧化钛不同方面的评论和报告,包括其性质、制备、改性和应用。然而,尽管纳米结构二氧化钛系统在骨修复方面的发展取得了进展,但关于这一主题的评论文章仍然很少[28]。本章的目的是介绍和讨论纳米结构二氧化钛(NS-TiO 2 )的性质[29]、制造、改性和应用。随着纳米技术的出现,NS-TiO 2 已发现了许多应用。
这项研究旨在调查智能包装在针对细菌(例如大肠杆菌和金黄色葡萄球菌)的抗菌活性中的应用。已经开发了基于二氧化钛纳米颗粒(TIO 2 NP)的绿色合成的不可降解塑料的替代品和壳聚糖-TIO 2 NP的生物膜。TIO 2 NP是从瓜贾瓦叶叶中合成的有效抗菌剂。壳聚糖是一种天然碳水化合物聚合物,由于其生物降解性,生物相容性和低毒性,用于智能生物膜中用于包装长期包装。壳聚糖二氧化物生物膜通过XRD,FTIR和FESEM进行了表征研究。分析表明,来自UV-VIS分析的380 nm处的光谱最小值表示Tio 2频段,从FESEM分析获得的5-10 nm二氧化钛纳米颗粒的小尺寸,晶体学性质是Tio 2 Anatase的平面“通过XRD分析的Tio 2 Anatase”,以及来自XRD组的carbox carbox carbox carbox carbox carbox carbox carbox carbox carbox coarbox carboxy carboxy carboxy carboxy carboxy os o-ti-ti-ti-ti-ti-ti-ti-ti-ti-hh。将二氧化钛纳米颗粒掺入壳聚糖中,并通过观察居民区研究并记录了掺入包装的抗菌特性的有效性。因此,TIO 2-智者有效抑制细菌菌落的生长。研究仅考虑使用的抗菌包装,通常将其用于可生物降解的包装。
(34) Schulman Plastics 声称产品范围应扩大到包括“白色母粒”(“MW”)(目前归类为 TARIC 代码 3206 19 00 90)。MW 是基本元素的浓缩混合物,例如颜料、染料、载体、分散剂和添加剂。它们被封装在热固性树脂中,然后冷却并切成颗粒,用于着色或增强塑料的性能。TiO 2 是 MW 的重要白色颜料成分,正是这种物质使 MW 能够将塑料染成白色。因此,Schulman Plastics 声称,反倾销税导致欧盟进口 TiO 2 的成本增加,将导致中国 TiO 2 转而用于生产 MW。这反过来会进一步增加从中国进口/倾销到欧盟的廉价 MW 的数量,使欧盟 MW 生产商无法有效竞争。
硅胶橡胶(SIR),一种重要的弹性体,由于其独特的特性而广泛用于生产各种工程和一般产品。尽管具有显着的特性,但基于SIR的产品仍需要抗微生物剂,例如二氧化钛,TIO 2,以消除黑色霉菌问题。仍然,添加该试剂会改变复合材料的加工性以及物理和机械性能。这项研究研究了添加不同TiO 2含量作为填充硅橡胶复合材料的加工性,物理性能和机械性能的影响。使用两圈磨坊制备了20-耐度高温风化(HTV)的爵士,在0.0、0.3、0.6和1.2 wt%的情况下加固。结果表明,以0.3 wt%TIO 2加强的爵士复合材料表现出最佳性能,其拉伸强度为1.49 MPa,突破时伸长率为340.87%,模量为0.664 MPa,Modulus中的100%,Modulus 300%的0.822 MPA和Modulus 500%的0.954 mpa的300%。此性能可以归因于此浓度下TIO 2和硅橡胶颗粒之间的有效交联密度以及有效的相互作用。结构和形态分析进一步证实了结果。因此,可以推断出,用0.3 wt%二氧化钛固化的硅橡胶具有制定需要抗菌特性的有机硅橡胶化合物的潜力。
Ultrafastber激光器广泛用于各种军事和平民应用中,1 - 3,例如光学通信4和精确加工。5,6产生超短脉冲的主要方法之一是被动模式锁定的技术,其中关键是将饱和吸收器(SA)引入激光腔。模式锁定的ber激光器可以使用合适的配对作为SAS实现,从而在性能和输出稳定性方面具有优势。6现有的饱和吸收材料包括半导体可饱和吸收镜7,8和由石墨烯,9,10钼二钼de(MOS 2)11,12和黑磷所代表的二维材料。13,14此外,多种材料已用于超快激光器中的模式锁定设备,包括SNSE 2,15 GEAS 2,16 RGO-CO 3 O 4(参考17)和WCN。18然而,对SAS使用的新材料的调查仍处于早期阶段。因此,有必要探索新型材料作为具有出色非线性光学特性的替代SAS,以实现模式锁定的超短脉冲激光器。
本研究旨在调查从事颜料级 TiO 2 生产的工人(15 名接触工人和 20 名未接触工人)口腔细胞的 DNA 损伤、微核频率和元核改变。我们还评估了遗传毒性生物标志物与尿液和呼出气冷凝液 (EBC) 中的氧化应激/炎症生物标志物的关联,以及生物标志物和报告的呼吸道症状之间的可能关联。尽管符合 TiO 2 职业接触限值,结果显示接触工人的直接/氧化性 DNA 损伤和微核频率增加。遗传毒性参数与尿液和 EBC 中的氧化应激/炎症生物标志物有关,从而证实了 TiO 2 暴露会影响氧化平衡。遗传毒性/氧化应激生物标志物水平较高的工人报告出现早期呼吸道症状,表明分子改变可以预测早期健康功能障碍。这些发现表明需要在健康监测计划中评估早期健康损害,并妥善解决处理 TiO 2 的工作场所的安全问题。
背景和目的:为提高光催化降解性能,优选使用具有较大表面积的光催化剂颗粒。二氧化钛作为光催化剂的有效性取决于所用的合成方法。该方法影响所生产的催化剂的粒度、结晶度和相组成。本研究旨在开发一种用于棕榈油厂废水深度处理的纳米二氧化钛光催化剂的绿色合成工艺。方法:二氧化钛纳米粒子的绿色合成使用含有保加利亚乳杆菌培养物和钛氧氢氧化物金属氧化物的德曼-罗戈萨-夏普肉汤培养基。研究的因素是钛氧氢氧化物的摩尔浓度(0.025 摩尔;0.035 摩尔和 0.045 摩尔)和温度(40;50 和 60 摄氏度)。使用粒度分析仪对合成的光催化剂进行表征以确定粒度。所生产的纳米粒子尺寸范围为 1-100 纳米的光催化剂进一步采用扫描电子显微镜-能量色散 X 射线和 X 射线衍射进行表征。对光催化剂进行了棕榈油厂二级废水深度处理测试。本次测试研究的因素包括辐射时间和二氧化钛光催化剂剂量。处理性能从废水质量和污染物去除效率两个方面进行评估。结果:利用保加利亚乳杆菌通过钛氧氢氧化金属氧化物生物合成了纳米二氧化钛光催化剂。在 60 摄氏度的温度下和 0.025 摩尔金属氧化物溶液中进行的合成过程产生了尺寸为 33.28 纳米的二氧化钛光催化剂。经测定,光催化剂中钛和氧组分的含量分别为39.06%和47.95%,二氧化钛结晶度为67.6%,θ度为25.4。这表明绿色合成制备了锐钛矿衍射纳米二氧化钛光催化剂。用该二氧化钛光催化剂处理棕榈油厂二级废水,化学需氧量去除率为16.16-27.27%,生物需氧量去除率为11.05-21.95%。苯酚具有毒性并且难以生物降解,在使用1克/升光催化剂剂量,照射2.5小时的情况下,可以显著去除苯酚(高达81.12%)。结论:纳米二氧化钛光催化剂的生物合成受温度和金属氧化物浓度的影响。棕榈油厂二级废水光催化深度处理工艺表明,该合成工艺可有效去除酚类物质。木质素、氨基酸和果胶等化合物在该工艺中矿化不明显。
及其储存,以及建立利用可再生能源的自主能源系统。绿色能源的技术解决方案取决于开发具有所需特性的新材料,这些材料能够在适当的环境条件(温度、压力)下可逆地积累氢,也取决于允许在不消耗大量能源的情况下获得分子氢的技术工艺。具有全新特性的材料的创造与生产在原子和分子水平上控制特性的纳米级系统密不可分。该综述考虑了在各种氢能应用中使用以催化性能和高稳定性而闻名的二氧化钛的各种纳米结构的可能性的研究结果。使用氢化物糊和高熵合金进行固态储氢的有希望的方向受到了广泛关注。
摘要 利用源自农业废弃物的产品作为低成本吸附材料去除有机或无机污染物是理想的选择,因为这些材料在许多国家都很容易获得。这项研究旨在制备由纳米复合材料 OPBA / 膨润土 / TiO 2 制成的环境友好型吸附剂。采用共沉淀法制备 OPBA,在膨润土制备中添加 CTAB 表面活性剂。同时,采用溶胶-凝胶法制造 TiO 2 。通过 XRD、FTIR、SEM 和 BET 进行表征。吸附剂光谱没有显示吸收的显著变化,其中 OH 键变弱是由于膨润土层间存在 TiO 2 造成的。另一种可能性是由于煅烧和加热的影响。H 2 O 中的 OH 基团在层间被羟基化和脱水。 OPBA/TiO 2 /Bentonite复合材料的形成并没有明显改变TiO 2 的结晶性,证明OPBA和Bentonite的加入并没有降低光催化活性,整个样品的形貌为片状结构,且存在孔隙;在Bentonite/TiO 2 中加入OPBA导致样品的比表面积降低。