摘要 . 首先将水杨醛与乙二胺以 1:2 的摩尔比缩合制备偶氮席夫碱配体 (L1),然后将制备的亚胺化合物 (S1) 与 2,5-二氯苯胺反应,合成了一种新的 Ni(II)、Pd(II) 和 Pt(II) 配合物,并用于制备含有金属离子 Ni(II)、Pd(II) 和 Pt(II) 的配合物。利用紫外可见光、红外和核磁共振、摩尔电导、元素分析和质谱研究了合成化合物的结构特征。元素分析结果表明 [M:L] 化学计量为 1:1。根据摩尔电导研究,制备的所有最终产品都不具有电解性质。根据光谱研究,Ni(II)、Pd(II) 和 Pt(II) 的配合物可能具有方平面几何形状。然后评估了 Pd(II)、Ni(II) 和 Pt(II) 配合物对不同类型的革兰氏阴性菌 [ 大肠杆菌 ( ATCC 25922 )] 和阳性菌 [ 金黄色葡萄球菌 ( ATCC 25923 )] 的抗菌活性,结果显示对这些细菌具有良好的显著性。通过研究的 PC3 细胞系对正常细胞 WRL-68 来检查钯配合物对前列腺恶性细胞的细胞毒性作用。将使用 MOE 软件研究这些配合物的目标微生物的分子对接。
汽车修理厂的废物管理不当对环境污染造成了重大影响。这些修理厂附近的区域暴露于大量废机油和其他碳氢化合物废物中。生物修复可能是一种实用的解决方案,因为它具有更好的成本效益和高完全矿化概率,不会造成二次污染。因此,本研究旨在分离、表征和鉴定能够利用和降解碳氢化合物的真菌。这项研究是通过收集马来西亚半岛北部地区受石油污染的场所(包括车间、家庭和污水处理厂)的土壤和水样本进行的。通过在含有废机油(碳氢化合物)作为唯一碳源的选择性琼脂上培养真菌来筛选碳氢化合物降解能力。在选择性琼脂上生长的真菌菌落被划线并传代培养到马铃薯葡萄糖琼脂上,直到获得纯分离物。通过 2,6-二氯苯酚靛酚 (DCPIP) 测定进行进一步筛选,以确认所有真菌分离物利用碳氢化合物的能力。根据形态学特征和显微镜观察对分离的真菌进行了鉴定。从石油污染环境中分离出的四种真菌被鉴定为 Aspergillus sydowii USM-FH1、Aspergillus westerdijkiae USM-FH3、Curvularia lunata USM-FH6 和 Chaetomium globusum USM-FH8。这些真菌分离物在烃类污染场地的生物修复中表现出良好的应用潜力。
未成熟胚和未成熟花序是间接高粱再生的最佳外植体。然而,从田间或温室中获取这些外植体需要很长的培养期。因此,幼苗的茎尖具有很大的优势,可以很容易地获得外植体,以满足全年基因转化实验的需求。这里我们报告了两种埃及高粱品系 LG1 和 LG3 的幼苗茎尖快速再生方案。愈伤组织诱导培养基 CIM1 和 CIM2 的合成生长素 2,4-二氯苯氧乙酸 (2,4-D) 和激动素 (Kin) 的浓度不同,它们在促进两种基因型的愈伤组织形成方面的能力不同,然而,这两种基因型对愈伤组织诱导的反应明显不同。 LG3 在 CIM1 上的最低愈伤组织指示百分比和最高愈伤组织诱导百分比分别为 16.60% 和 33.65%,而 LG1 在 CIM2 上的最低愈伤组织指示百分比和最高愈伤组织诱导百分比分别为 33.65%。两种基因型的愈伤组织再生差异不显著,最低为 11.29%,最高为 20.15%。我们的研究结果表明,利用这些埃及高粱品系进行组织培养以进行转基因和基因编辑具有潜力。
摘要:在寻找靶向多巴胺D 3受体(D 3 R)的新型比特化合物中,N-(2,3-二氯苯基)替代嗪核(主要药物矩阵)已与6,6-或5,5-二苯基-1,4-苯基-1,4--二烷基-2-二甲酰基-2-甲酰基或1,4-碳二 - 4-碳二 - 4-碳二 - 4-碳二 - 4-4-二 - 4-4-4-二 - 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-架(分解药理)通过未取代或3-F/3-OH取代的丁基链。这种旧的杂交策略导致发现有效的D 3 r-选择性或多坐菌配体可能对中枢神经系统疾病有用。,6,6-二苯基-1,4-二氧烷衍生物3显示了D 3 r-优先效果,而对于5,5-二苯基-1,4-二恶烷和1,4-苯并二氧烷衍生物6和9的5,5-二苯基-1,4-二氧烷和9和9的有趣的多白素行为已突出显示,该行为分别显示为6和9有效的D 3 R部分激动剂。他们还表现为低功率5-HT 2A R拮抗剂和5-HT 2C R部分激动剂。这样的验证可能是发现新型抗精神病药物的一个有希望的起点。关键词:多巴胺D 3受体,比特型配体,多坐Multitarget化合物,中枢神经系统疾病,停靠研究■简介
非小细胞肺癌 (NSCLC) 是全球癌症相关发病率和死亡率的主要原因之一。需要新的治疗和药物再利用策略。胞嘧啶阿糖苷 (AraC) 是一种 S 期抑制剂,历史上用于治疗白血病。以前,AraC 并未被研究作为 NSCLC 的治疗选择。我们探索了一种针对 S 期和线粒体途径的新型体外辅助治疗概念。描述了一种合成途径,用于生成带有唑、二唑和三唑部分的新型线粒体损伤性 N-(4-氯苯基)-γ-氨基酸衍生物。对所得化合物在已描述的 A549 细胞上的抗癌活性进行了评估。五种化合物表现出与胞嘧啶阿糖苷 (AraC) 相当的令人信服的抗癌活性。最有前景的化合物 7g (IC 50 = 38.38 µ M) 含有 3,4-二氯苯基部分,能够诱导线粒体损伤,导致显著 (p < 0.05) ROS 产生和 ATP 合成抑制。与 AraC 和 7g 单一疗法或 UC 相比,7g 与 AraC 协同作用并显著降低 A549 活力。AraC 与 7g 联合使用后对 A549 活力的细胞毒性作用与阿霉素单一疗法相似。这些结果表明,7g 可以作为增强标准化疗药物活性的辅助药物进行探索。需要进一步研究以更好地了解 N-(4-氯苯基)-γ-氨基酸的安全性、有效性和精确的细胞靶点。
摘要:电子或核自旋,例如金刚石中的无机“氮空位”中心和硅中的其他缺陷,代表了一种很有前途的量子比特(量子位),可用于量子信息处理、数据存储以及量子传感。然而,实现大量自旋作为量子比特的可扩展和空间定义的组织仍然具有挑战性。因此,开发新材料和新技术来调节自旋-自旋距离和相互作用对于保持量子相干性和实现自旋量子比特之间的相干信息交换起着重要作用。本文,我们报告称,可以通过嵌段共聚物自组装策略实现有机自由基作为电子自旋的空间定义组织。我们证明了有机发光自由基自旋的量子相干性和自旋晶格弛豫可以通过使用一个定义明确的星形嵌段共聚物库来轻松调节,该嵌段共聚物的中心含有一个共同的三[4-(对-苄基)-2,6-二氯苯基]甲基自由基核心,通过可控的开环聚合从中接枝二嵌段聚酯。对两种聚酯嵌段的不兼容性和体积比进行微调不仅可以产生一系列自组装模式(即球体、圆柱体、薄片和螺旋体),自旋在纳米尺度上发生相分离,而且可以调节自旋晶格弛豫动力学和自旋相干寿命,这些寿命在很大程度上取决于作为分子自旋的有机自由基周围的聚合物基质的长度和刚度。这种嵌段共聚物自组装策略可能提供一种普遍适用的方法,将分子自旋作为有前途的量子位集成和组织到可扩展的架构和功能设备中,以实现量子信息处理、量子计算和自旋电子学中的前沿应用。
亲爱的Tangredi先生:国家玉米种植者协会(NCGA)感谢有机会对环境影响草案(EIS)(EIS)和植物风险评估草案发表评论,以确定通过基因工程为除草剂耐受性开发的不调节状态,并具有针对性特异性的糖尿病耐药性的耐药性促进杂化型杂化含量(MONBAIB MAIB MAIB MAIB SEED)(MON 877442)。成立于1957年,NCGA代表了36,000多个会费 - 在所有50个州支付了玉米种植者,以及通过其州的玉米院子组织贡献的300,000多名农民的利益。NCGA及其25个附属的国家协会共同努力,帮助保护和推动玉米种植者的利益。NCGA的成员支持使用基因工程为dicamba,Glufosinate,quizalofop和2,4-二氯苯氧基乙酸耐药性开发的玉米放松管制,MON87429。我们支持USDA/Aphis的结论,即MON87429不太可能比其得出的常规玉米品种构成更大的植物害虫风险。诸如抗昆虫耐药性和耐除草剂特征的新技术,以及实施强大的害虫管理计划,对于持续种植者的成功至关重要。有效地管理杂草及其对除草剂的抵抗是对玉米农民的持续挑战。这个新特征包与其他批准的特征堆叠在一起,可以提供农民综合杂草管理计划的关键组成部分,帮助他们在In the comprehensive draft EIS and Plant Pest Risk Assessment, USDA/APHIS acknowledges the “Approval of the petition would provide for cultivation of a stacked-trait HR corn variety resistant to 4 differing herbicide modes-of-action (MOA), and 5 herbicides, which could be of benefit to weed and HR [herbicide resistance] weed management in corn cropping system.”除草剂是种植者保护农作物免于损害杂草的必不可少的工具,从而影响产量,玉米质量和支持保护习惯。
土壤微生物与土壤中发生的许多过程密切相关,包括向植物供应养分,通过生长激素的产生来刺激植物的生长,控制植物病原体的活性,维持土壤结构的活性,并促进无机污染物的浸出和矿物质污染物的矿物质(beave and in。 2000; Hayat,Ali,Amara,Khalid和Ahmed,2010年;这些微生物社区具有巨大的新陈代谢和生理性质,这使它们能够在土壤环境中生活,适应和扩散,这些土壤环境也表现出极高的结构和化学异性恋(Madigan,Clark,Clark,Stahl,Stahl,&Martinko,2010年)。尽管在肥沃的土壤中细菌丰度较高,但细菌仅占土壤表面的一小部分(Young,Crawford,Nunan,Otten,Otten和Spiers,2008年)。在土壤中,微生物倾向于聚集(Ekschmitt,Liu,Vetter,Fox和Wolters,2005年),在非常小的土壤中形成微生物热点(<1 cm 3)。在评论中,Kuzyakov和Blagodatskaya(2015)认为,大多数生物地球化学过程都在这些热点中进行。这种热点本质上是短暂的,并且来自物理,化学和微生物过程之间的复杂相互作用。这种活动热点的例子包括根际,碎屑和土壤骨料表面。微生物活性的热点不存在。上述过程需要各种条件的托管。在这些热点示例中,根际是最动态的,热点持续日子,而与土壤结构相关的热点可以更持久,并且可以持续几个月。土壤孔在形成诸如土壤结构之类的热点的形成中起着重要作用,形成了相互联系的网络,通过该网络,包括氧的扩散,酶的运输以及分离的有机物,细菌的迁移率和细菌之间的相互作用。许多研究人员在微生物量表上观察到细菌分布中的空间模式(Kizungu等,2001; Nunan,Wu,Young,Crawford,&Ritz,2003;VieubléGonod,Chadoeuf,Chadoeuf和Chenu,&Chenu,2006年)。,例如VieubléGonod等。(2006)观察到土壤中2,4-D(2,4二氯苯氧基酸)的矿化的异质模式,从田间到微栖息地量表时的可变性增加。
薄膜沉积、微米级图案化以及制造低应力薄膜的能力相结合,构成了表面微机械结构,其特征具有柔顺性,并且彼此或与基板紧密贴合。如果一个柔顺特征与相邻特征或基板接触,则表面之间可能会发生永久粘附。这可能发生在两个不同的时间。首先,当结构在牺牲释放蚀刻后干燥时,相邻表面毛细管状空间中截留的液体弯月面减少产生的表面张力可以将特征拉向彼此或基板 1, 2。强粘附力(在微力学中称为粘滞力)可能导致设备永久粘附,从而导致设备干燥后产量低得令人无法接受。表面也可能相互接触并在稍后的时间(例如在设备运行期间)保持粘连,从而导致可靠性故障。这两种故障中的后者可能成本更高。已经提出了各种机制来解释粘连的原因 1-6 。据报道,从冲洗液中沉淀出来的固体杂质会粘附两个表面,这是原因 1, 2 。结果表明,疏水设备之间的粘连的主要方式是通过范德华力,而范德华力和氢键都是造成亲水表面粘连的原因 3 。其他研究表明,多晶硅表面的吸附水是造成粘连的原因 4, 5 。静电吸引力也被认为是造成粘滞的原因 6 。有关粘滞力的综述,请参阅参考文献 2 和 3。已经做了大量工作来解决表面微机械结构中的粘滞故障 7-25 。除了保持无杂质的释放和冲洗工艺外,还应用了许多技术来提高产量和长期可靠性。冷冻升华是一种常用的提高产量的技术 7-11 。使用这种方法,将设备浸入溶剂(或溶剂混合物)中,然后冷冻。通过升华固化的溶剂(或溶剂混合物),可以避免液-气界面。Guckel 等人首次使用 MeOH 和 H 2 O 混合物进行冷冻升华来干燥微机械部件。7 。环己烷 8、9、叔丁醇 10 和对二氯苯 11 等溶剂也已升华以干燥设备。其他提高产量的技术包括使用光刻胶 12 或二乙烯基苯 13
2 兰契大学植物学系,兰契,贾坎德邦,印度 3 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 4 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 摘 要 本研究旨在建立一种优化的印度芥菜 (L.) Czern & Coss. (芥菜) 不同部位的体外愈伤组织诱导和增殖方案。将叶和茎外植体培养在补充了各种生长素和细胞分裂素浓度的 Murashige 和 Skoog (MS) 培养基中,以获得愈伤组织形成的最佳生长条件。所测试的激素组合包括 0.5、1 和 2 mg/L 的吲哚-3-乙酸 (IAA)、0.5、1 和 2 mg/L 的苄氨基嘌呤以及 0.5、1 和 2 mg/L 的 2,4-二氯苯氧乙酸 (2,4-D)。基于愈伤组织诱导频率,在不同时期和光照、温度和湿度培养条件下,对叶片和茎外植体产生的愈伤组织进行三次重复评估。在以 1:1 的比例补充 BAP 和 2,4 D 的 MS 培养基中,将叶片作为外植体的结果显示,接种 45 天后愈伤组织诱导率最高,这是独一无二的。茎外植体接种 45 天后,在激素浓度 BAP:IAA(0.5:1)下产生愈伤组织。这些产生的愈伤组织显示出明显的伸长和良好的叶片形状。未分化愈伤组织增生、变绿并形成成熟芽凸显了愈伤组织的有效性。继代培养后,愈伤组织的习惯化和持续传代使得培养基中无需添加细胞分裂素。愈伤组织获得细胞分裂素,导致出芽和营养器官发育。反过来,这些细胞允许器官发生,成熟植物成功再生。这种可重复的方案可用于愈伤组织诱导和植物再生,这是植物育种或生物技术应用(包括用于作物改良的基因转化)的重要工具。此外,通过既定的方案,对芥菜组织中植物激素之间相互作用的认识得到了提高。 关键词:愈伤组织、再生、生长素、作物、BAP、器官发生、芥菜 (L.) 1. 引言 在植物组织培养中,愈伤组织发生和器官发生是基因转化和作物发育所必需的过程。这些程序中的一个关键阶段是有效的愈伤组织诱导,它为以后的再生和转化提供所需的细胞材料。先前的研究表明,为了在不同芸苔属植物中获得较高的愈伤组织诱导率和植物再生,优化植物激素浓度至关重要(Gupta & Chaturvedi,2021 年;Singh 等人,2020 年)。大多数人称之为印度芥菜,Brassica juncea (L.) Czern. & Coss。是一种广泛种植的油籽作物,其油料和叶类蔬菜对经济十分重要。