通过时间分辨的吸收和荧光光谱研究,研究了荧光日二烯(FDAE)衍生物的荧光二乙烯(FDAE)衍生物的激发态动力学的抽象近红外两光子吸收和激发态动力学。用量子化学计算进行预筛选预测,封闭环异构体中用甲基噻酯基(MT-FDAE)的衍生物具有两光子的吸收横截面 - 大于1000 GM,这是通过Z-SCAN的测量和激发功率依赖于瞬时吸收的实验证实的。比较在一光子和同时的两光子激发条件下瞬时吸收光谱的比较表明,在CA的时间表上,在三个途径上停用了较高激发态的MT-FDAE的闭合环异构体。200 fs:(i)比单光过程,(ii)内部转换到s 1状态的环反应反应的效率更高,(iii)放松到与s 1状态不同的较低状态(s 1'状态)。时间分辨的荧光测量结果表明,该S 1'状态被放松到S 1状态,具有较大的排放概率。在本工作中获得的这些发现有助于以两光子的方式扩展FDAE到生物学窗口的开关切换能力,并应用于超分辨率荧光成像。
摘要:最近,基于聚合物的复合材料在低温条件下的应用已成为一个热门话题,尤其是在航空航天领域。在低温温度下,聚合物变得更脆,温度引起的热应力的不利影响更为明显。在本文中,综述了热塑性和热塑性聚合物用于低温应用的研究开发。本综述考虑了有关的文献:(a)经过修饰的热固性聚合物的低温性能以及所报道的修饰方法的改进机制; (b)某些商业热塑性聚合物的低温应用潜力以及经过修饰的热塑性聚合物的低温性能; (c)最近将聚合物用于特殊的低温环境液氧的进步。本文概述了针对低温应用聚合物的研究开发。此外,已经提出了未来的研究指示,以促进其在航空航天中的实际应用。
纳米复合材料是非常重要的材料,因为它比其他填充量低的复合材料具有优越的特性。苯乙烯丁二烯橡胶(SBR)是一种非极性橡胶,充当绝缘体并且具有低电导率。石墨烯血小板纳米热量从0.1到1.25 PHR水平合并到SBR橡胶中,以改善电气性能。通过改变填充含量的苯乙烯丁二烯橡胶(GPN)的苯乙烯丁二烯橡胶的电和机械性能的比较研究。掺入石墨烯血小板纳米热量会增加苯乙烯丁二烯橡胶中的电导率。已经观察到,通过在较高频率约为100 kHz时增加纳米燃料的量,电导率逐渐增加。苯乙烯丁二烯橡胶的机械性能通过掺入石墨烯血小板纳米热的含量得到改善。还以100 kHz的恒定频率研究了施加的压力和温度对复合材料的体积电阻率和电导率的影响。SBR/GPN纳米复合材料的电性能会随着压力和温度的增加而增加,直至一定极限,然后变为恒定。
摘要该研究的目的是评估功效并确定某些植物衍生的单苯甲酸烯和丝兰提取物的作用的有毒机制,作为针对红粉甲虫,Tribolium castaneum的化学杀虫剂的替代方法。Carvone,1,8-Cineole,Cuminaldehyde和Linalool以及Yucca Schidgera提取物是对照剂,其对红粉甲虫的功效在实验室中进行了测试并与Malathion进行了比较。评估功效的标准是测试化合物对成人死亡率和红粉甲虫后代的影响。此外,还研究了对照剂对T. castaneum T. castaneum中某些酶(乙酰胆碱酯酶,淀粉酶和碱性磷酸酶)的影响。此外,研究了测试的控制测量对处理过小麦颗粒的体重减轻的影响。测试的物质在成人死亡率和后代产生方面具有很高的控制T. castaneum的能力,尤其是在用作熏蒸剂时。在成人死亡率中,马拉硫酮显示出对T. castaneum作为熏蒸剂的最高潜力,其次是Carvone,Yucca提取物,Cuminaldehyde,Linalool和1,8-Cineole,LC 50值为0.05,331.5,331.5,331.5,365.1,365.1,372.2,372.2,460.5 mg - 467.5 mg - 1000 cm - 2.2000 cm - 2000 cm - 2000 cm-2000 cm-2,2000 cm-2,2000 cm-2,2000 cm-2,2000 cm-
本文介绍了一种多步骤、集成流动和批量工艺,将 4'-取代苯乙酮转化为一系列应用相关的炔烃(方案 1)。我们通过将该方法应用于四种市售起始材料来展示该方法的多功能性。此外,我们通过对选定的化合物进行放大反应来说明和验证该工艺的适应性。此外,我们评估了这种集成流动路线的原子经济性 (AE) [28] 和 E 因子 [29],以将它们与之前报道的基于批量的程序进行比较,并讨论未来改进的前景。选择集成流动技术既是出于对 MOST 前体的可扩展生产的需求(这是其最终应用的关键要求),也是因为它代表了一种比传统批量工艺更环保、更可持续的合成替代方案。 [30–32] 此外,由于传热效率更高,它不仅可以实现改善的传质和单流多步合成,还可以更安全地处理反应性和有毒的起始原料和/或中间体。[33,34]
1 Bioscience COPD/IPF,研究与早期发展,呼吸和免疫学,生物制药研发研发,阿斯利康,阿斯利康,瑞典,哥德堡,2个生物科学哮喘,研究与早期发展,呼吸和早期发展,呼吸与免疫学,生物武器,生物武器,宾夕法尼亚州,宾夕法尼亚州,宾夕法尼亚州,国王,国王,国王,国王,,国王,国王,,国王,国王,,国王,国王,,国王,,国王,,国王,,国王,,,国王,,国王,,国王,,国王,,,国王,国王,,,国王,,,国王,,国王,,国王,,,国王,,,国王,,,国王,,国王,,,国王,,,国王的3号。约翰·霍普金斯大学公共卫生学院,巴尔的摩,马里兰州,美国,美国,4个生物学系,克里格艺术与科学学院,约翰·霍普金斯大学,巴尔的摩,马里兰州巴尔的摩,美国5号,美国公共卫生研究系,克里埃格艺术与科学学院,约翰斯·霍普克斯大学,巴尔蒂·伊斯兰教及6.免疫学,生物制药研发,阿斯利康,哥德堡,瑞典,7个项目负责人部,研究与早期发展,呼吸道和免疫学,生物制药研究研发R&D,阿斯利康,阿斯利康,哥德堡,瑞典,瑞典,瑞典8号
摘要:镍烯丙基复合物是丁二烯(BD)1,4-会员聚合物的催化剂。协调链转移聚合(CCTP)尚未使用这些系统评估。我们在这项工作中报告了丁二烯在存在π-甲基镍(II)三氟乙酸(TFA)和MG N BUET或ALET 3作为链转移剂(CTA)案例研究的情况下的聚合。反应遵循一阶动力学与单体相比。在CTA存在的情况下证明了链的转移,并形成带有共轭二烯部分的多丁二烯。这允许通过重新插入链条一锅访问分支多丁二烯。多丁二烯氢化后,通过13 c NMR定量分析分支,并评估了其对氢化样品的热性能的影响,特别是对于无法定量确定的低度分支。暂时提供了催化循环的完整描述。如果在乙烯聚合过程中在文献中描述了类似的串联过程,据我们所知,这是迄今为止报道的唯一用于共轭二烯的系统,导致分支多丁二烯,从而扩展了CCTP过程的应用范围。■简介
摘要:Photoswitches是与光相互作用后化学转化的分子系统,它们在许多新技术中都有潜在的应用。Photoswitch候选者的设计和发现需要一系列特性的复杂分子工程,以优化特定应用程序的候选人,该任务可以使用量子化学筛选程序有效地解决。在本文中,我们在分子太阳能热能储存的背景下,使用量子量子化学方法进行了大规模筛选,对大约50万二百万二二烯二烯照片开关。我们进一步设备基于系统预测的太阳能转换效率并阐明了这种方法的潜在陷阱来对系统进行评分。我们穿越双环二烯化学空间的搜索揭示了具有前所未有的太阳能转换效率和存储密度的系统,这些系统显示了下一代分子太阳能热储能系统的有希望的设计指南。
简介:人工生成智能(AGI)和大语言模型(LLMS)在医疗保健方面引起了极大的关注,并具有改变我们生活和泌尿科的各个方面的巨大希望,这也不例外。材料和方法:我们对电子数据库进行了全面的文献搜索,并包括讨论AGI和LLMS医疗保健中的文章。此外,我们还将与Chatgpt和GPT-4互动的经验与实际情况报告和案例构造相互作用。结果:我们的评论重点介绍了这些技术在泌尿外科中的潜在应用和可能的影响,在鉴别诊断,优先考虑治疗方案以及促进研究,外科医生和患者教育方面对这些技术的影响和影响。在当前的发展阶段,我们认识到需要并发验证和连续